
Learning a Robot’s Social Obligations from Comparisons of Observed
Behavior

Colin Shea-Blymyer1 and Houssam Abbas1

Abstract— We study the problem of learning a formal
representation of a robot’s social obligations from a human
population’s preferences. Rigorous system design requires a
logical formalization of a robot’s desired behavior, including
the social obligations that constrain its actions. The preferences
of the society hosting these robots are a natural source of
these obligations. Thus we ask: how can we turn a popu-
lation’s preferences concerning robot behavior into a logico-
mathematical specification that we can use to design the robot’s
controllers? We use non-deterministic weighted automata to
model a robot’s behavioral algorithms, and we use the deontic
logic of Dominance Act Utilitarianism (DAU) to model the
robot’s social and ethical obligations. Given a set of automaton
executions, and pair-wise comparisons between the executions,
we develop simple algorithms to infer the automaton’s weights,
and compare them to existing methods; these weights are then
turned into logical obligation formulas in DAU. We bound the
sensitivity of the inferred weights to changes in the comparisons.
We evaluate empirically the degree to which the obligations
inferred from these various methods differ from each other.

I. INTRODUCTION

Rigorous design of autonomous systems, such as social
robots, requires that the system’s requirements be formally
expressed. That is, that they be expressed as formulas in
a mathematical logic, for which automatic verification and
control algorithms can be developed. Such algorithms come
with correctness guarantees, thus significantly increasing
trust in the robot. This paper focuses on a special class
of requirements: the ethical and social obligations that con-
strain the robot’s actions. Deontic logic has been developed
especially to deal with obligations [1]. In prior work, we
formalized the obligations and permissions of self-driving
cars in Dominance Act Utilitarianism (DAU), a deontic
logic that derives a system’s obligations from utilitarian
calculations [2]. We then demonstrated how to verify that an
automaton has given DAU obligations via model-checking.
In this work we tackle the question of how to elicit the DAU
obligations in the first place: that is, how can we tell which
obligations should constrain the robot, so we can design it
to have and meet these obligations? This can be viewed as
a special case of the more general requirements elicitation
phase in software engineering.

Eliciting requirements starts by a conversation with the
stakeholders. For social robots the stakeholders are the mem-
bers of the society that will host these robots. A simple way
to elicit requirements is to show a stakeholder two behaviors
of the robot in the same situation, and ask which behavior

1School of Electrical Engineering and Computer Sci-
ence, Oregon State University, Corvallis, OR, USA
{sheablyc,houssam.abbas}@oregonstate.edu

they prefer. This pair-wise comparison has the advantages
of being minimally burdensome to the respondents, and
of being a quantitative assessment that can be processed
mathematically. We follow this approach in this paper. The
challenge then is to go from the pair-wise comparisons all the
way to logical formulas that explain the respondents’ prefer-
ences and synthesize the social obligations that are implicit
in their minds. This paper exploits the particular structure
of DAU formulas to perform this obligation learning task.
Specifically, the pair-wise comparisons are used to assign a
score to each behavior (the scoring step), such that if we
order the behaviors by score, we approximately recover the
population’s preferences. (In general, exact recovery is not
possible since different pair-wise comparisons need not be
consistent). From the scores we then learn weights on the
robot’s actions, and from the weights DAU formulas can be
derived.

The scoring process has been tackled in the preference
learning literature in different contexts. We experiment with
two methods from the literature: Bradley-Terry [3] and Borda
[4]. However, our objective goes beyond scoring behaviors,
since we want to ultimately infer DAU formulas. We also
want to study the sensitivity of the final formulas to changes
in opinion. For example, if one preference is flipped, or
one respondent does not provide any answers, how much
could the derived formulas differ? This sensitivity is an
important consideration as it tells us whether our final learned
obligations are robust to small shifts in opinion and to
sampling artifacts. If the action weights, and therefore the
obligations, change a lot, this tells us the learned obligations
are practically arbitrary and cannot be taken as a reliable
reflection of a population’s social norms. We thus propose
two additional, simple, scoring methods, for which we can
provide a sensitivity analysis.

Related work This work has much in common with
preference based reinforcement learning (PbRL). In PbRL,
an agent demonstrates behavior to an expert and uses the
expert’s preferences regarding that behavior to learn a policy
[5]. Techniques have been developed to learn from prefer-
ences over policies [5], actions [6], and trajectories [7]. We
learn from preferences over trajectories. Core to many of
these algorithms is a method of paired comparisons. Such
a method takes pairwise comparisons of alternatives and
assigns each alternative a score. Paired comparisons have a
long history in psychometrics and economics ([8], [9], [10]).
Scores arising from these methods are similar to the scores
given to chess players via the Elo [11] and Glicko [12]
rating systems, which express a competitor’s likelihood of

Fig. 1. A stit automaton T with weights in green and atomic propositions
in blue. Let τ1 be (q0,K1, q1)(q1,K6, q3)(q3,K3, q2)(q2,K5, q1) . . .
repeating the last three transitions ad infinitum. Assuming λ is DiscSum
and γ = 0.9, then λ(τ1) ≈ 54.13. In fact, τ1 is the optimal execution of
T . Further, there is no execution τ ′ ∈ ΞK2

q0 such that λ(τ ′) > λ(τ) for
τ ∈ ΞK1

q0 . Thus, K1 is the optimal action at q0. Consequently, �[T cstit :
a] is an obligation at q0 — the proposition “a” is a necessary result of any
execution in ΞK1

q0 . Less obviously, �[T cstit : Xb] is an obligation at q0,
where “Xb” means that b holds true in the next state.

defeating (being preferred over) another competitor. Recent
work in comparison methods has suggested that simply
scoring an alternative by the number of comparisons won
(the Borda count) has many attractive properties [13], while
other work has sought to reconcile orderings inferred from
pairwise comparisons and direct rating [14]. In our work, the
scores are only an intermediate step towards learning optimal
policies that yield DAU formulas.

II. SYSTEM MODEL AND FORMALIZED OBLIGATIONS

To develop a formal specification for a system, we must
model the system, and choose a specification language.

A. System model

We model the robot’s high-level behavioral algorithms,
such as navigation or decision-making, as a weighted non-
deterministic automaton, an example of which is given in
figure 1. This model, and variations on it, are very common
in the field of formal methods and logic. It captures reactive
behavior, conditional executions, uncontrolled events in the
environment, and costs of various actions.

Definition 1 (Stit automaton): Let AP be a finite set of
atomic propositions. A stit automaton T is a tuple T =
(Q, qI ,K, F,∆, L, w, λ), where Q is a finite non-empty set
of states, qI is the initial state, K is a finite non-empty set of
actions, F ⊂ Q is a set of final states, ∆ ⊂ Q×K×Q is a
finite transition relation such that if (q,K, q′) and (q,K ′, q′)
are in ∆ then K = K ′, L : Q→ 2AP is a labeling function,
w : ∆ → R is a weight function, and λ : Rω → R is an
accumulation function.
The atomic propositions denote basic properties that hold in
a state. E.g. ‘Ignore-patient’ or ‘Respond-to-call’. We can
interpret formulas of temporal logic, like CTL, over the
non-deterministic executions of the automaton in the usual
way [15]. Denote by K(q) = {K ∈ K | ∃(q,K, q′) ∈ ∆}
the set of actions available at q.

Definition 2 (Execution): Let T be a stit automaton and
q0 a state in Q. A q0-rooted execution τ of T is a sequence
of transitions of the form τ = (q0,K0, q1)(q1,K1, q2) . . . ∈
∆ω . The value of execution τ = τ [0]τ [1]τ [2] . . . is defined
to be λ(w(τ [0])w(τ [1])w(τ [2]) . . .), and abbreviated λ(τ).
Because of non-determinism, a sequence of actions can yield
multiple executions. Examples of function λ are the min and
discounted sum functions:

min(τ) = min
i
w(τ [i]) (1)

DiscSum(τ) =

∞∑
i=0

γi · w(τ [i]) , 0 < γ < 1 (2)

where γ is the discount factor for the summation. We will
write wi for the weight w(τ [i]).

B. The specification language

Deontic logics were specifically developed to formalize
and reason about obligations and permissions, including
ethical and social obligations. In this paper, obligations are
formalized in the deontic logic of Dominance Act Utilitar-
ianism (DAU) [16]. With DAU, we can describe temporal
behaviors and reason about uncontrollable environments.
Intuitively, in DAU, a system’s obligations are derived from
maximizing utility: an agent ought to do those things that
are logically necessary for an optimal state of affairs.

We give the DAU basics which will suffice for our
purposes in this paper. Let the set of executions starting with
state q be Ξq , and let those executions in Ξq that begin with
action K ∈ K(q) be denoted ΞKq = {τ | τ [0] = (q,K, q′)}.
An action K∗ in K(q) is optimal if there is no other action
K ′ ∈ K(q) s.t. λ(τ ′) > λ(τ) for all τ ∈ ΞKq and τ ′ ∈ ΞK

′

q .
In DAU, an agent’s obligation is to enable an ideal state of
affairs, which is characterized by the formulas that result
from optimal actions. Specifically, let A be a formula in
the underlying temporal logic, like CTL. An execution τ
either satisfies or violates A. The basic obligation modality
in DAU is �[α cstit : A], which says that robot α ought to
see to it that A is true. Its formal semantics are as follows:
�[α cstit : A] holds true in a state q iff for all optimal actions
K∗ at q, and for all executions τ in ΞK

∗

q , τ satisfies A. That
is, A is a necessary condition of all executions from optimal
actions.

III. LEARNING OBLIGATIONS FROM PAIRWISE
COMPARISONS

The fact that DAU obligations are derived from value
maximization, and the value function λ depends on the
weights wi, allows us to focus on learning the weight
function w of the automaton in Def. 2. On the other hand,
when comparing different methods, we will need to measure
the difference between formulas. This section explains how
both steps are performed.

Automata generation. We generate system automata ran-
domly via ErdosRenyi model [18] T ∼ G(|Q|, ρ), where the
probability of adding a transition between two given states is

ρ. Transitions are carefully added to avoid absorbing states.
Weights assigned to each transition are chosen uniformly at
random, and the executions τ are the result of random walks
of finite (but relatively great) length. We focus on the case
where the accumulation λ is DiscSum (eq. 1), with a discount
rate γ = 0.9.

Generating preference data. Given a stit automaton T ,
we generate n random executions τi of T from an initial state
qI via random walks. Then, we simulate a population making
comparisons as follows. For each pair τi, τj s.t. i 6= j, for
each member p of the population P , we draw values for the
latent scores sp(τi) ∼ Di and sp(τj) ∼ Dj , where the mean
of the distribution Di is λ(τi). In the preference learning
literature, sp(τi) captures an implicit, or latent, score that
a member of the population assigns to a trajectory, based
on which it judges it to be better or worse than another. Of
course, we do not ask the population for the latent scores,
we only ask which execution they prefer. Let Rn×n be our
response matrix, where

rij =
∑
p∈P

(1 if sp(τi) > sp(τj) else 0) (3)

i.e. rij is the number of comparisons where τi is preferred
over τj . R may also be thought of as an adjacency matrix
for a weighted directed graph where an edge from τi to τj
is weighted by the number of times τi won against τj . The
matrix R is then passed to each of the methods of paired
comparison discussed in section III-A. Each method then
returns an (explicit) score s(τi) for each execution.

Weights from scores. To estimate the values of the
weights w ∈ T from the scores, we need knowledge of the
accumulation function λ ∈ T , and of the executions τ . When
λ is min, we can estimate the weights by a mixed-integer
linear feasibility problem (eq. 4). Each weight must be equal
to, or larger than, the score of any execution they appear in.
Additionally (and the reason this problem requires integer
constraints) each execution must have a weight that appears
in it that equals that execution’s minimum.

min
~w

0

s.t. wj ≥ s(τi) ∀wj ∈ τi ∀τi
wj ≤ s(τi) + (1− bi,j)M ∀wj ∈ τi ∀τi

n∑
j=0

bi,j ≥ 1 ∀τi

(4)
When λ is DiscSum, the problem of estimating the weights

w ∈ T can be formulated as a least-squares problem (eq. 5).
Namely, we create the matrix An,m where m = |∆| - i.e. it
has one column per transition in ∆. Initially A is the zero
matrix. For each transition τi[k] ∈ τi we add γk to aij where
j is the index of transition τi[k] in ∆. We can now estimate
the weights by minimizing the squared sum of the difference
between an execution’s accumulated value, and its score.

min
~w

n∑
i=0

(~ai
T ~w − s(τi))2 (5)

With these estimated weights, we can employ value itera-
tion [17] to determine the optimal action to take from each
state in T , and, therefore, we can determine what obligations
hold in each state. The solution w∗ to Eq 4 obeys :

‖δ ~w‖ ≤ ‖A+‖‖δ~s‖

where A+ is the pseudo-inverse of A. This will be used for
the sensitivity analyzes for the various scoring methods in
subsection III-A.

Measuring the distance between formulas. To compare
the various scoring methods, we will need to quantify the
difference between the DAU formulas they yield. In the
absence of a fixed labeling map L for the automaton (Def. 1),
this is an ill-posed problem, since we could always choose a
labeling that makes syntactically different formulas, logically
‘close’. In our experimental setup, we generate random
automata, so there is no fixed labeling map. Luckily, the DAU
formulas that hold at a given state q depend on which actions
are optimal at q, so we can quantify the difference between
optimal actions. A policy is a list π of optimal actions, with
one entry π[i] per automaton state. As a state may have
multiple optimal actions available to it, π[i] is a set of actions,
e.g.π[i] = {K1,K2}. We measure difference between two
policies π1 and π2 by taking the Jaccard distance [19]
between each pair of entries and then taking the L2 norm of
the vector of distances ~d, as shown in equation 6

di(π1, π2) =
|π1[i] ∩ π2[i]| − |π1[i] ∪ π2[i]|

|π1[i] ∩ π2[i]|
(6)

so D(π1, π2) = ‖~d(π1, π2)‖2 is the difference between
the two policies.

A. The four scoring methods.

We now introduce four methods for turning pairwise
comparisons of alternatives into scores for each alternative.

a) Bradley-Terry: The Bradley-Terry method of paired
comparison [3] is a probabilistic model of the result of
a match-up between two alternatives. This model is well
known in the literature on paired comparisons and was
discovered as early as 1860 by Fechner [20], and again in
1929 by Zermelo [21], before being popularized by Bradley
and Terry. The Bradley-Terry model finds use today in
machine learning research as a popular choice of comparison
method, evidenced by its use in [22] and [23].

The Bradley-Terry model estimates that the probability of
i defeating j is:

Pr(i > j) =
βi

βi + βj
(7)

The parameter βi for each alternative i can be solved by
maximum likelihood estimation from the comparisons data,
though faster spectral methods have been developed as well
[24]. This necessity for parameter estimation makes formal
sensitivity analysis difficult, so an empirical approach is
taken in section IV. In this work, the score returned by the
Bradley-Terry method of an execution τi is s(τi) = βi.

b) Borda: We apply the Borda count [4] as a method
of paired comparisons. Originally conceived as an election
method, and still in use as one today, this method has gained
attention as a method of paired comparison for its simplicity
and its capability to recover the latent ordering of alternatives
with high fidelity [13].

The Borda method simply counts the number of times
an alternative i defeats any other alternative. More formally,
given a response matrix Rn×n where rij is the number of
people that prefer i over j, the Borda score for i is b(i) =∑
j 6=i rij . In this work we normalize the maximum returned

Borda score to one, so s(τi) = b(τi)

max(~b(τ))
.

c) Deterministic Depth-Based Scoring: We are also
interested in paired comparison methods that maximally
preserve transitivity in the superiority of an alternative over
another. To avoid the analytic complexities of model-fitting
methods, we introduce two novel methods for which we have
calculated sensitivity results.

Our first such method, the Deterministic Depth-Based
Scoring (or d-comp) method, constructs a weighted directed
graph G over the n alternatives using the response matrix
Rn×n as an adjacency matrix.

If G is acyclic, then it will be clear which histories are the
most preferred, and which are the least. However, it is likely
that G will contain cycles, and so, to arrive at a transitive
ordering of histories, we remove cycles from G using a
variant of [25]. We find in our experiments that the wall-
time for this operation is negligible for even large problems
in this domain.

We call the weighted directed acyclic graph that results
from applying this algorithm Ĝ = (V, Ê).

Now that we’ve obtained the weighted DAG Ĝ, we can
use the transitive nature of the graph to establish a ranking
of traces. To do so, we first obtain a topological ordering of
Ĝ = (V, Ê).

Given the topological ordering Ĝ′, we may assign values
to the traces represented by the vertices in Ĝ′ that best
obey the preferences expressed by our population. To avoid
arbitrarily large rewards, we will normalize all rewards to the
range [0, 1]. We begin by finding the longest path between
root and leaf vertices — that is, the longest path between a
vertex with no incoming edges and a vertex with no outgoing
edges. The target (v0) of that path is assigned a value of 0
and the source (v1) of that path is assigned a value of 1. The
predecessor (vp0) of v0 on that path is given the value of
1/l where l is the length of the path. Then the predecessor
of vp0 on that path is given the value of 2/l, and so on,
until v1 (which would receive a value of l/l = 1). Next,
assign all root vertices the value of 1. Then, every vertex is
assigned a value equal to 1 − d/l where d is its maximum
distance from a root vertex. So s(τi) is the value assigned
to the vertex associated with τi. We note that this method
biases scores towards 1. We explore one way to mitigate this
with our second novel method.

d) Stochastic Depth-Based Scoring: In sub-section III-
A.0.c, we propose a simple method to assign values to

traces in a given extended linear order. We now introduce
a modification of that procedure in order to investigate the
solution’s sensitivity under a different valuation procedure.
In comparison to the previous method, this second method
(s-comp) harbors no bias towards scores of 1 due to the
introduction of random score sampling.

Given a directed acyclic graph Ĝ, find all vertices with no
incoming edges (i.e. the roots). All root vertices ri receive
the same value s(ri) ∼ U(0, 1). These root vertices make
up the first layer of the graph — L0. Assign each other
vertex to layer Ld where d is that vertex’s maximum distance
from a root vertex. Assign all vertices in Ld the same value
s(Ld) ∼ U(0, s(Ld−1)).

‖δ~s‖2 =

∣∣∣∣ 1

2du+1
− 1

2dv

∣∣∣∣ · m∑
k=0

|Dk|
4k

(8)

where |D0| is 1.
e) Comparison methods.: For the comparison of poli-

cies arising from T , we define a baseline and an ideal method
for determining optimal policies. The baseline method,
against which the others are measured, directly applies value
iteration to the true weights of T . The policy generated by
this process is the true optimal policy of the T . The ideal,
or no-comparisons method solves the minimization problem
in eq. 5 by replacing s(τi) with λ(τi). That is, the no-
comparisons method minimizes the sum-squared difference
between an execution’s accumulation of unknown weights
and the true value of that execution, as opposed to the
score for that execution. The policy returned by the no-
comparisons method is the theoretically ideal policy that a
method using pairwise comparisons could return.

f) Theoretical Sensitivity Analyzes: It is important to
place theoretical bounds on how much the learned weights
change, when there’s an opinion change in the responses. Be-
low we present sensitivity analyzes for the scoring methods
we introduced, s-comp and d-comp, and for Borda. To the
best of our knowledge, there is no known sensitivity analysis
for Bradley-Terry. (In the next section, we study empirically
the sensitivity or the final policy to changes in responses and
experimental parameters.)

d-comp The scores returned by this method may change
only when an edge in Ĝ is added or removed, so we can
bound the change in ~s above by impact of the worst case
edge edit on this graph. Let du be the depth of a vertex
in Ĝ, defined by the maximum distance of u from a root
vertex. Let there be an edge addition uv to the edge set of
Ĝ such that du < dv . Let the descendants of u be partitioned
into sets D1, D2, . . . , Dm such that D1 is composed of the
children of u that are one layer beneath u, D2 is composed
of the children of u that are two layers beneath u, and Dm is
composed of the children of u that are m layers beneath u. If
the edge addition uv is worst case, then we find the change
in this method’s returned score ‖δ~s‖ is given by equation 9.

‖δ~s‖ =

∣∣∣∣dv ∗ du − 1

n

∣∣∣∣ (1 +

m∑
k=1

|Dk|) (9)

Fig. 2. (a) The tournament graph G constructed with adjacency matrix R. (b) and (c) the DAG Ĝ obtained from G with values on vertices as given by
the deterministic depth-based scoring method, and the stochastic depth-based scoring method, respectively. Given this tournament, the Borda method would
assign scores: s(τ1) = 1.0, s(τ2) = 0.857, s(τ3) = 0.238, s(τ4) = 0.762, and the Bradley-Terry method would return: s(τ1) = 0.723, s(τ2) = 0.357,
s(τ3) = −1.135, s(τ4) = 0.045.

s-comp Again we find that the scores may only change
due to edge edits on Ĝ. Let du be the layer of u defined by
the maximum distance of u from a root vertex. Let there
be an edge addition uv to the edge set of Ĝ such that
du < dv . Let the descendants of vertex v be partitioned
into sets D1, D2, . . . , Dm such that D1 is composed of the
children of v that are one layer beneath v, D2 is composed
of the children of v that are two layers beneath v, and
Dm is composed of the children of v that are m layers
beneath v. We find the expected value given to layer n is
E[s(Ln)] = 1

2n+1 . so, in expectation, δ~s[v] = 1
2du+2 − 1

2dv+1 .
For children of v in the next level, δ~s[Dk] = 1

2du+1+k− 1
2dv+k .

Thus, in total, the sensitivity to a worst case edge edit for
this method’s returned score is given in equation 8.

Borda. The Borda score can be rewritten as ~b = R · 1n,
where 1n is an n-dimensional column vector whose entries
are all 1. In this form, the sensitivity of this method is clear:
‖δ~b‖ ≤ ‖δR‖. Changes to the score are closely bounded
above by changes in the response matrix.

IV. EXPERIMENTAL RESULTS

We explore the robustness of the four methods presented
in section III-A. We begin with an empirical measure of the
sensitivity of an output policy to perturbations in the given
values of trajectories. We then investigate how changing
experimental parameters alters the performance of these
methods.

Policy sensitivity to changes in preferences. To explore
the sensitivity of a method, we first use it to find a policy
πu on a 25-state automaton. This policy is our unperturbed
policy. We then perturb the latent score s′(τi) = s(τi) + δi
where δi is a random value, and ~δ is of a fixed magnitude.
Next we use the method in question to learn a new policy
πp from these perturbed values. This is our perturbed policy.
Changing the latent scores results in changes to the prefer-
ence matrix R. The empirical sensitivity to this perturbation
is taken as the difference D(πu, πp) between the unperturbed

0 2 4 6 8 10
noise magnitude

0.0

0.5

1.0

1.5

2.0

2.5
ch

an
ge

 in
 p

ol
icy no comparisons

d-comp
s-comp
bradley-terry
borda

Fig. 3. Change in policy as the magnitude of change in trajectory values
increases. The “d-comp”, “s-comp”, and “borda” curves are overlapping.

and perturbed policies. In figure 3 we show the empirical
sensitivity of each method (averaged over 50 batches) as
the fixed magnitude ‖~δ‖2 of perturbation increases. Figure
3 shows that the no-comparisons ideal method is highly
sensitive to noise — allowing noise to noticeably change the
returned policy. The Bradley-Terry method is also sensitive
to noise, but not as dramatically. The other methods of
comparison all seem insensitive to this degree of noise,
and thus are preferable from a sensitivity-to-preferences
perspective.

A reliable method behaves predictably when the experi-
mental parameters, like population size or automaton size,
change. For this study, we measure a method’s performance
as the difference D(πmethod, πtrue) between its inferred policy
and the optimal policy derived from the true weights of the
automaton.

In each of the following analyses, 50 datasets are generated

0.0 0.2 0.4 0.6 0.8
connection probability

1.5

2.0

2.5

3.0

3.5

4.0

4.5

po
lic

y
di

ffe
re

nc
e

fro
m

 b
as

el
in

e

no comparisons
d-comp
s-comp
bradley-terry
borda

Fig. 4. Policy difference as the number of edges in the automaton increases.

for every value of the experimental parameter, and we report
a method’s average performance over those sets. Further,
the default state size |Q| of an automaton is 25, with edge
probability ρ of 0.6, and weights w assigned to each edge
with uniform probability in the range 0 to 10. The number
n of trajectories sampled from each automaton is equal to
its number of transitions, and the length of each trajectory is
1.5× |Q|. The latent score of a trajectory is sampled from a
normal distribution with a standard deviation σ of 2.5. The
default population size |P | is 500.

Robustness to automaton connectedness. We begin by
varying the connectedness ρ of the automaton while keeping
the number of states constant. Increasing ρ increases the non-
determinism of the automaton and creates a larger execution
space. As seen in figure 4, the no-comparisons ideal de-
creases in performance as the connectedness increases. Our
novel methods and the Borda method remain approximately
a constant factor away from the ideal and level off. The
Bradley-Terry method begins to follow suit, but sharply
increases in performance until it meets the performance
of the ideal method, at which point the two worsen in
performance at the same rate.

Under the suspicion that our choice of normal distributions
N (µ;σ) for sampling the latent scores was of particular
advantage to Bradley-Terry, we performed the experiment
with a uniform distribution and observed similar results. We
then increased the standard deviation σ (fig. 5). Methods s-
comp, d-comp and Borda performances do not change. While
Bradley-Terry’s performance varies with σ, it always per-
forms better than, or equal to the other (non-ideal) methods.

Robustness to number of automaton states. We next
show the performance of these methods as the number |Q|
of states in the automaton grows. Figure 6 shows that the
Bradley-Terry method is consistently competitive with the
no-comparisons ideal method, while the other methods fall
behind. Indeed, the difference between the performance of
the Bradley-Terry method and the other non-ideal methods
increases monotonically as the automaton’s size grows.

2 4 6 8 10
standard deviation of sample distribution

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

po
lic

y
di

ffe
re

nc
e

fro
m

 b
as

el
in

e

no comparisons
d-comp
s-comp
bradley-terry
borda

Fig. 5. Policy difference as the standard deviation of the sampling distribu-
tion grows. The “d-comp”, “s-comp”, and “borda” curves are overlapping.

5 10 15 20 25 30 35 40
automaton size

1

2

3

4

5

6

po
lic

y
di

ffe
re

nc
e

fro
m

 b
as

el
in

e

no comparisons
d-comp
s-comp
bradley-terry
borda

Fig. 6. Policy difference as the number of states in the automaton grows.
The “d-comp”, “s-comp”, and “borda” curves are overlapping.

Robustness to population size. It is also desirable that
the policies obtained through these methods are reliable
reflections of a population’s preferences regardless of that
population’s size. Figure 7 suggests that the population size
|P | is not a major factor in the performance of any of the
methods.

Robustness to number of behaviors. Finally, we would
like a sense of how many executions we must sample
from an automaton and submit to judgment before we see
reasonable policies being returned. Figure 8 shows that the
no-comparisons ideal and Bradley-Terry methods require
about n = 350 executions before their performance ceases to
increase. This implies that these methods are optimal when
n ≈ |∆|. Meanwhile, other methods do not seem to vary
greatly based on the number of trajectories compared.

V. CONCLUSIONS

DAU has a computational structure that allows the learning
of DAU formulas from pair-wise comparisons of robot

0 100 200 300 400 500
population

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75
po

lic
y

di
ffe

re
nc

e
fro

m
 b

as
el

in
e

no comparisons
d-comp
s-comp
bradley-terry
borda

Fig. 7. Policy difference as the sample population grows. The “d-comp”,
“s-comp”, and “borda” curves are overlapping.

0 50 100 150 200 250 300 350 400
number of trajectories

3.25

3.50

3.75

4.00

4.25

4.50

4.75

po
lic

y
di

ffe
re

nc
e

fro
m

 b
as

el
in

e

no comparisons
d-comp
s-comp
bradley-terry
borda

Fig. 8. Policy difference as the number of trajectories sampled from
the automaton increases. The “d-comp”, “s-comp”, and “borda” curves are
overlapping.

behavior, when the robot is modeled by a non-deterministic
automaton. The learning algorithm allows the use of different
scoring methods. The two methods we introduced in this
paper allow a theoretical analysis of their sensitivity to
changes in population preferences. Next it will be interesting
to extend our approach to cases where the automaton is only
partially available, or is unknown altogether. This can happen
when the learning task is performed early in the design stage.

REFERENCES

[1] G. H. von Wright, “Deontic logic,” Mind, vol. 60, no. 237, January
1951.

[2] C. Shea-Blymyer and H. Abbas, “A deontic logic analysis of au-
tonomous systems’ safety,” in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control, 2020, pp.
1–11.

[3] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block
designs: I. the method of paired comparisons,” Biometrika, vol. 39,
no. 3/4, pp. 324–345, 1952.

[4] J. d. Borda, “Mémoire sur les élections au scrutin,” Histoire de
l’Academie Royale des Sciences pour 1781 (Paris, 1784), 1784.

[5] R. Akrour, M. Schoenauer, and M. Sebag, “Preference-based policy
learning,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2011, pp. 12–27.

[6] W. Cheng, J. Fürnkranz, E. Hüllermeier, and S.-H. Park, “Preference-
based policy iteration: Leveraging preference learning for reinforce-
ment learning,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 2011, pp. 312–
327.

[7] A. Wilson, A. Fern, and P. Tadepalli, “A bayesian approach for policy
learning from trajectory preference queries,” in Advances in neural
information processing systems, 2012, pp. 1133–1141.

[8] L. L. Thurstone, “A law of comparative judgment.” Psychological
review, vol. 34, no. 4, p. 273, 1927.

[9] B. Trawinski and H. David, “Selection of the best treatment in a
paired-comparison experiment,” The Annals of Mathematical Statis-
tics, vol. 34, no. 1, pp. 75–91, 1963.

[10] H. Buhlmann and P. J. Huber, “Pairwise comparison and ranking in
tournaments,” The Annals of Mathematical Statistics, vol. 34, no. 2,
pp. 501–510, 1963.

[11] A. Elo, “The rating of chessplayers past and present. arco pub
(1978),” Glickman, ME, Paired comparison models with time-varying
parameters, Tech.

[12] M. E. Glickman, “A comprehensive guide to chess ratings,” American
Chess Journal, vol. 3, no. 1, pp. 59–102, 1995.

[13] N. B. Shah and M. J. Wainwright, “Simple, robust and optimal
ranking from pairwise comparisons,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 7246–7283, 2017.

[14] M. Perez-Ortiz, A. Mikhailiuk, E. Zerman, V. Hulusic, G. Valenzise,
and R. K. Mantiuk, “From pairwise comparisons and rating to a unified
quality scale,” IEEE Transactions on Image Processing, vol. 29, pp.
1139–1151, 2019.

[15] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic.” in Logic of
Programs, 1981, pp. 52–71.

[16] J. Horty, Agency and Deontic Logic. Cambridge University Press,
2001.

[17] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J.,
vol. 6, pp. 679–684, 1957.

[18] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[19] P. Jaccard, “The distribution of the flora in the alpine zone.1,”
New Phytologist, vol. 11, no. 2, pp. 37–50, 1912. [Online].
Available: https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-
8137.1912.tb05611.x

[20] G. T. Fechner, Elemente der psychophysik. Breitkopf u. Härtel, 1860,
vol. 2.

[21] E. Zermelo, “Die berechnung der turnier-ergebnisse als ein
maximumproblem der wahrscheinlichkeitsrechnung,” Mathematische
Zeitschrift, vol. 29, no. 1, pp. 436–460, 1929.

[22] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei,
“Reward learning from human preferences and demonstrations in
atari,” Advances in neural information processing systems, vol. 31,
pp. 8011–8023, 2018.

[23] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,” in
Advances in Neural Information Processing Systems, 2017, pp. 4299–
4307.

[24] L. Maystre and M. Grossglauser, “Fast and accurate
inference of plackett–luce models,” in Advances in Neural
Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28.
Curran Associates, Inc., 2015. [Online]. Available:
https://proceedings.neurips.cc/paper/2015/file/2a38a4a9316c49e5a833517c45d31070-
Paper.pdf

[25] G. Even, J. S. Naor, B. Schieber, and M. Sudan, “Approximating min-
imum feedback sets and multicuts in directed graphs,” Algorithmica,
vol. 20, no. 2, pp. 151–174, 1998.

