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We develop a formal framework for automatic reasoning about the obligations of autonomous cyber-physical systems, including their

social and ethical obligations. Obligations, permissions and prohibitions are distinct from a system’s mission, and are a necessary part

of specifying advanced, adaptive AI-equipped systems. They need a dedicated deontic logic of obligations to formalize them. Most

existing deontic logics lack corresponding algorithms and system models that permit automatic verification. We demonstrate how

a particular deontic logic, Dominance Act Utilitarianism (DAU) [23], is a suitable starting point for formalizing the obligations of

autonomous systems like self-driving cars. We demonstrate its usefulness by formalizing a subset of Responsibility-Sensitive Safety

(RSS) in DAU; RSS is an industrial proposal for how self-driving cars should and should not behave in traffic. We show that certain

logical consequences of RSS are undesirable, indicating a need to further refine the proposal. We also demonstrate how obligations

can change over time time, which is necessary for long-term autonomy. We then demonstrate a model-checking algorithm for DAU

formulas on weighted transition systems, and illustrate it by model-checking obligations of a self-driving car controller from the

literature.
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1 INTRODUCTION

The need for embodied Cyber-Physical Systems (CPS) that are fully autonomous, update their own objectives and

interact with us in our daily lives is more obvious today than ever. To cite one example, the Covid-19 pandemic has

highlighted the need for nursing robots that can check on patients in high-risk situations, self-driving vehicles that

deliver essential goods to people who cannot get them, and companion robots that understand and adapt to different

living situations like those of elderly people or incapacitated persons. We refer to these different types of systems

as human-scale CPS : embodied CPS that interact with humans and their environment, and are perceived as being

reasonably intelligent and autonomous. The common thread to all of these applications is that the autonomous CPS is

seen as just another agent in our environment, and our interactions with it assume a wide range of social expectations
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2 Shea-Blymyer and Abbas

built through our interactions with other humans. Indeed, the success of these systems depends on their respect for

these social norms of interaction, and more particularly on the robot’s respect for ethical guidelines that are as necessary

as they are ambiguous. These obligations are distinct from the CPS’ mission, which is, for example, to go from A to B

without collisions. Obligations place constraints on how the CPS achieves its mission, and might be violated. Safety and

performance are no longer sufficient criteria for a successful CPS design: ethical, and more generally social, obligations

must be formalized, verified, and where possible, enforced. In this work we tackle the challenges of formalizing ethical

obligations in a useful and interpretable way, analyzing the properties of these obligations, and automatically verifying

that a system has given obligations.

In the fields of Artificial Intelligence (AI) and Logic, the formalization of ethical and social obligations dates back at

least to Mally [28, 30], with most of the focus going towards developing the ‘right’ logics and simulation-based studies

of normative systems. While these logics are interpretable, they lack system models of the agents under obligation. In

[19], limited ethical requirements are modeled in the costs and/or constraints of a classical optimal control problem.

Precisely defining the costs and constraints that embed ethics into a control problem is challenging, and providing a

high-level interpretation of what a particular choice logically entails is generally not possible. E.g. how does the behavior

change qualitatively if a slack variable is increased or a weight is decreased? In CPS, The formalization, verification, and

enforcement of ethical and social obligations has not been adequately tackled. This paper develops a formal framework

and tool for the analysis of the ethical obligations of human-scale CPS, with applications in self-driving cars.

The formal verification and control of CPS safety and performance has relied on alethic temporal logics, like Linear

Temporal Logic [34], to express behavioral specifications of system models. Alethic logic is the logic of necessity and

possibility: for example, if p is a predicate, p says that p is true in every accessible world - that is, p is necessary.

Possibility is then formalized as p := ¬ ¬p: saying that p is possible is the same as saying that it is not the case

that ¬p is necessary. And so on. The best known instantiation of this in Verification is LTL [31], in which an accessible

world is a moment in the linear future. Thus p formalizes ‘p is true in every future moment’, and p formalizes ‘p is

true in some future moment’. It is natural to want to leverage alethic logics and associated tools to formalize and study

CPS obligations as well. However, it has been understood for over 70 years that the logic of obligations is different from

that of necessity [32]: applying alethic logic rules to obligation statements can lead to conclusions that are intuitively

paradoxical or undesirable. Consider the following statements:

A. The car will eventually change lanes: this is a statement about necessity. It says nothing about whether the car plays

an active role in the lane change (e.g., perhaps it will hit a slippery patch), or whether it should change lanes.

B. The car can change lanes: this is a statement about ability. The car might be able to do something, but does not

actually do it.

C. The car sees to it that it changes lanes: this is a statement about agency. It tells us that the car ensures that it changes

lanes.
1
I.e., it is an active agent in the lane change.

D. The car ought to change lanes: this is a statement about obligation. The car, for example, might fail to meet its

obligation, either by choice or because it can’t change lanes.

These are qualitatively different statements and there is no a priori equivalence between any two of them. The logic we

adopt should reflect this: its operators and inference rules should model these aspects in the logic, without having to add

new atomic propositions for every new concept and situation that occurs to us. Alethic logics like LTL cannot do so.
2

1
The ‘see to it’ phraseology is very common in Logic and we use it in this paper.

2
Anderson and Kanger attempted a reduction of obligations to alethic logic. See [32, Section 3] for a discussion.
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We now give a simple but fundamental example, drawn from [32], illustrating this inability of alethic logic. One

might be tempted to formalize obligation using the necessity operator : that is, formalize ‘The car ought to change

lane’ by change-lane. However, in alethic logic, p =⇒ p: if p is necessarily true then it is true. If we use for

obligation this reads as Obligatory p =⇒ p: this inference is clearly unacceptable because agents sometimes violate

their obligations so some obligatory things are not true. This leads to the question of what an agent ought to do when

some primary obligations are violated. I.e. the study of statements of the form Obligatory p ∧¬p =⇒ .... This is not

possible if obligation is formalized using in pure alethic logic, since p ∧¬p =⇒ q is trivially true for any p and q.

Deontic logic [18] has been developed specifically to reason about obligations, starting with von Wright [42]. It is

used in contract law, including software contracts, and is an active area of research in Logic-based AI [26]. There are

many flavors of deontic logic [22]. In this paper, we adopt the logic of Dominance Act Utilitarianism (DAU) developed

by Horty [23] because it explicitly models all four aspects above: necessity, agency, ability and obligation. We first

extend DAU to formalize the obligations of human-scale CPS with complex missions. We then formalize a subset of

Intel’s Responsibility-Sensitive Safety, or RSS, in DAU [39]. RSS proposes a set of rules to be followed by self-driving

cars to avoid collisions. To promote ‘naturalistic driving’, RSS places an obligation to avoid aggressive driving while

giving permission to drive assertively. Using our DAU formalization of RSS, we demonstrate that RSS allows a car to

facilitate an accident in traffic, clearly an undesirable position; this points to the need to further refine the RSS proposal.

We develop the first model-checking algorithm for DAU formulas, to determine whether a system model has a given

obligation or not. We implemented the model-checker and present results on a self-driving car controller. An obligation

constitutes a constraint on the CPS controller, and can be integrated into the controller’s objective; thus designing

obligations and checking them is conceptually akin to reward shaping in Reinforcement Learning [43].

When studying an autonomous CPS’ obligations, it is also necessary to analyze how these obligations change over

time, as a result of the agent’s choices [13]. For example if I ought to visit an ill relative today or tomorrow, and I don’t

visit them today, then it’s reasonable to say that tomorrow, my residual obligation is to visit them. It is important that

the formal conclusions yielded by the logic match such intuitive conclusions, in order to build trust in human-scale

CPS. We prove obligation propagation patterns for obligations expressed in DAU.

Our contributions in this paper are to
3
:

(1) formalize the obligations of RSS in DAU, and highlight the subtle decisions that need to be made when developing

a rigorous specification;

(2) derive undesirable consequences of the RSS obligations, pointing to the need for further refinements of RSS;

(3) demonstrate patterns for temporal propagation of obligations in DAU, allowing evaluation of obligations

inheritance;

(4) develop a model-checking algorithm of DAU specifications that allows us to establish whether a system has a

given obligation or not; and

(5) implement the model-checker and demonstrate its use on a self-driving car from the litterature.

Paper Organization. Section 2 defines DAU. Section 3 gives a first case study: the formalization of a subset of RSS

rules in DAU, and some of their logical consequences. Section 4 proves propagation patterns that hold in DAU. Section 5

gives a model-checking algorithm for absolute and conditional DAU statements. Section 6 demonstrates the use of the

3
A preliminary conference version of this work appeared in [40]. This paper adds the analysis of temporal propagation (item 3 above), improves the RSS

formalization significantly and formalizes assertive driving — a model of a social permission (in item 2), adds a model-checking algorithm for conditional

obligations, as the original can not find histories that satisfy a condition (in item 4) and implements both model-checkers and demonstrates their use

(item 5).
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model-checker on a highway driving controller from the literature. Related work is reviewed in Section 7, and Section 8

concludes the paper.

2 DOMINANCE ACT UTILITARIANISM

We adopt the logic of Dominance Act Utilitarianism (DAU) developed by Horty [23] because it explicitly models all four

aspects listed in the Introduction: necessity, agency, ability and obligation. It includes a temporal logic as a component

so we can describe temporal behaviors essential to system design, and it uses branching time, essential for modeling

uncontrollable environments. It has an intrinsic computational structure which makes it appealing for CPS verification

and control purposes: the agent’s obligations are derived from maximizing utility, so DAU can be viewed as the deontic

logic of utility maximization in non-deterministic systems. As such, it gives a logical interpretation to the behavior of

systems that maximize utility, such as [19]. This section summarizes the main aspects of DAU developed in [23].

Syntax. Let Aдents be a finite set of agents, which represent, for example, the cars in traffic. A DAU formula is

obtained as follows:

A := ϕ | ¬A | A∧A | [α cstit : A] | [α dstit : A] | ⊙ [α cstit : A] | ⊙ ([α cstit : A]/ϕ) | XA

where α ∈ Aдents , ∧,¬ are the usual boolean connectives, and ϕ is a formula in the logic CTL
∗
. We use CTL

∗
to specify

the CPS’ mission and to describe states of affairs in the world. We give the informal description of CTL
∗
operators and

refer the reader to [17] for formal semantics: the temporal operator means Always (now and in every future moment

along this trace), means Eventually (now or at some future moment along this trace), and R means Release: ϕRψ

means that eitherψ always holds, or it does not hold at some future moment and sometime before then ϕ holds. The

path quantifier ∀means For all paths, and ∃ means There exists a path. The DAU-specific operators informally mean

the following: [α cstit : A] is the agency operator and says that α sees to it, or ensures, that A is true; [α dstit : A] is a

variant on [α cstit : A]; ⊙[α cstit : A] is the obligation modality and says that α ought to ensure that A is true; finally,

⊙([α cstit : A]/ϕ) says that under the condition ϕ, α ought to ensure that A is true. The rest of this section gives the

formal semantics of these deontic operators.

Branching time. Let Tree be a set of moments with an irreflexive, transitive ordering relation < such that for any

three momentsm1,m2,m3 in Tree , ifm1 < m3 andm2 < m3 then eitherm1 < m2 orm2 < m1. There is a unique root

moment which we denote by 0. A history is a maximal linearly ordered set of moments from Tree: intuitively, it is a

branch of the tree that extends infinitely into the future. Given a momentm ∈ Tree , the set of histories that go through

m is Hm := {h | m ∈ h}. See Fig. 1. We will frequently refer to moment/history pairsm/h, wherem ∈ Tree and h ∈ Hm .

Definition 2.1. [23, Def. 2.2] With AP a set of atomic propositions, a branching time model is a tupleM = (Tree, <,v )

where Tree is a tree of moments with ordering < and v is a function that maps momentsm inM to sets of atomic

propositions from 2
AP

, the set of subsets of AP .4

In this paper, to retain a uniform satisfaction relation like [23], we will speak of formulas holding or not at anm/h

pair and writeM,m/h |= ϕ, where it is always the case that h ∈ Hm . When the formula is in CTL
∗
there should be no

confusion as a CTL
∗
path formula is evaluated along h and a state formula is evaluated atm. Given a DAU statement A,

4
In the DAU formulation of [23], v mapsm/h pairs, rather than momentsm, to subsets of AP . This is more general but disagrees with the common

usage of atomic propositions in CPS Verification, so we adopt this more classical definition of v . The ideas of this paper are best explained without such

(currently) unnecessary generalities.
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Fig. 1. A utilitarian stit model for an agent α illustrating the main DAU definitions. Momentsm < m′ with sets of histories Hm =
{h1, . . . , h6 } andHm′ = {h1, . . . , h4 }. Eachmoment is markedwith the actions available to α at thatmoment:Choicemα = {K1, K2 }

and Choicem
′

α = {K3, K4, K5 }. Action K2 = {h5, h6 } and K4 = {h2 }. Each history is marked with the formula(s) that it satisfies at
m and with its value Value (h), e.g.,m/h1 satisfies A and has value 3.m/h5 |= [α cstit : A] since Choicemα (h5) = K2, and both h5
and h6 satisfy A. On the other hand,m/h1 ̸ |= [α cstit : A] since Choicemα (h1) = K1 = {h1, h2, h3, h4 } and h4 does not satisfy A.
Optimalmα = {K2 } som/h5 |= ⊙[α cstit : A].Optimalm

′

α = {K4, K5 } and so α has no obligations atm′ since there is no formula
ϕ s.t. |ϕ |m′ ⊇ K4 ∪ K5 (See Def. 2.4). Finally,m/h5 |= [α dstit : A] because K2 ⊂ |A |m and Hm , |A |m = {h1, h2, h3, h5, h6 }.

the proposition it expresses at momentm is the set of histories where it holds starting atm

|A|Mm := {h ∈ Hm | M,m/h |= A} (1)

Where there’s no risk of ambiguity, we dropM from the notation, writing |A|m ,m/h |= A, etc.

Choice. Consider an agent α ∈ Aдents . Formally, atm, an action K is a subset ofHm : this is the subset of histories that

are still realizable after taking the action. At every momentm, α is faced with a choice of actions which we denote by

Choicemα . So Choicemα ⊂ 2
Hm

. See actions in Fig. 1. Choicemα must obey certain constraints given in the Supplementary

material. In what follows, Choicemα is assumed finite for every α andm.

Agency. Agency is defined via the ‘Chellas sees to it’ operator cstit , named after Brian Chellas [16]. Intuitively, an

agent sees to it, or ensures, that A holds atm/h if it takes an action K s.t., whatever other history h′ could’ve resulted

from K , A is true atm/h′ as well. I.e., the non-determinism does not prevent α from guaranteeing A.

Definition 2.2 (Chellas cstit). [23, Def. 2.7] With agent α and DAU statement A, let Choicemα (h) be the unique action

that contains h. Then

M,m/h |= [α cstit : A] iff Choicemα (h) ⊆ |A|Mm

If K ⊆ |A|m we say K guarantees A. See Fig. 1. A deliberative stit operator is also defined, which captures the notion

that an agent can only truly be said to do something if it also has the choice of not doing it. See Fig. 1.

Definition 2.3 (Deliberative stit). [23, Def. 2.8] With agent α and DAU statement A,

M,m/h |= [α dstit : A] iff Choicemα (h) ⊆ |A|Mm and |A|Mm , Hm

Operators cstit and dstit are not interchangeable and fulfill complementary roles.
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6 Shea-Blymyer and Abbas

Optimal actions. To speak of an agent’s obligations, we will need to speak of ‘optimal actions’, those actions that

bring about an ideal state of affairs. Let Value : H0 → R be a value function that maps histories ofM to utility values

from the real line R. This value represents the utility associated by all the agents to this common history. Given two

sets of histories Z and Y , we order them as

Z ≤ Y iff Value (h) ≤ Value (h′) ∀ h ∈ Z ,h′ ∈ Y (2)

Let Statemα := ChoicemAдents\{α } be the set of background states against which α ’s decisions are to be evaluated. These are

the choices of action available to other agents. Given two actions K ,K ′ inChoicemα , K ⪯ K ′ iff K ∩S ≤ K ′∩S for all S ∈

Statemα . That is, K ′ dominates K iff it is preferable to it regardless of what the other agents do (known as sure-thing

reasoning). Strict inequalities are naturally defined. Optimal actions are given by

Optimalmα := {K ∈ Choicemα | ∄K ′ ∈ Choicemα s.t. K ≺ K ′} (3)

Optimalmα is non-empty in models with finite Choicemα [23, Thm. 4.10].

Dominance Ought. We are now ready to define Ought statements, i.e., obligations. Intuitively we will want to say

that at momentm, agent α ought to see to it that A iff A is a necessary condition of all the histories considered ideal at

momentm. This is formalized in the following dominance Ought operator, which is pronounced “α ought to see to it

that A holds”.

Definition 2.4 (Dominance Ought). With α an agent and A an obligation in a modelM,

M,m/h |= ⊙[α cstit : A] iff K ⊆ |A|Mm for all K ∈ Optimalmα (4)

See Fig. 1 for examples. The dominance ought satisfies a number of intuitive logical properties; we refer the reader

to [23, Ch. 4]. The dual of the Ought is (weak, a.k.a. negative) Permission:

P[α cstit : A] := ¬ ⊙ [α cstit : ¬A]

The intuitive meaning of permission is that α can ensure A without violating any obligations. Moreover, having a

permission does not imply that one actually sees to it that A is true. This is quite different from A, which simply says

that A actually happens, and from ∃[α cstit : A] which says that α can ensure A, neither of which refers to obligations.

Conditional obligation. It is often necessary to say that an obligation is imposed only under certain conditions. Let X

be a proposition, i.e. X = |ϕ |m for some ϕ. The choice of actions available to α atm under the condition that X holds is

defined asChoicemα /X := {K ∈ Choicemα | K ∩X , ∅}. This is the right definition because non-determinism might make

it impossible to have K ⊆ X (i.e., an action that guarantees X ), but future actions might still ensure the finally realized

history will satisfy X . Thus in Fig. 1 Choicemα /B = {K1}. Conditional dominance is then defined by comparing only

histories that satisfy ϕ: for two actions K ,K ′ from Choicemα , K ⪯X K ′ iff K ∩ S ∩ X ≤ K ′ ∩ S ∩ X for all S ∈ Statemα .

The conditionally optimal actions are then

Optimalmα /X := {K ∈ Choicemα /X | ∄K ′ ∈ Choicemα /X s.t. K ≺X K ′} (5)

Finally, where A is an obligation and ϕ a formula in the underlying temporal logic, the conditional Ought is defined by

M,m/h |= ⊙([α cstit : A]/ϕ) iff K ⊆ |A|Mm ∀K ∈ Optimalmα /|ϕ |
M
m . (6)
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We note that conditional obligation is not the same as ϕ =⇒ ⊙[α cstit : ϕ]. Conditional obligation only compares

ϕ-satisfying histories, while this latter formula still compares all histories.

Terminology abuse. In what follows, histories that belong to optimal actions will be called optimal.

3 CASE STUDY IN MODELING: RESPONSIBILITY-SENSITIVE SAFETY FOR SELF-DRIVING CARS

Responsibility-Sensitive Safety, or RSS, is a proposal put forth by Intel’s Mobileye division [39]. It proposes rules or

requirements that, if followed by all cars in traffic, would lead to zero accidents. RSS attempts to promote a natural way

of driving by drawing the line between acceptable assertive driving, and unacceptable aggressive driving. We consider

these notions, of assertive vs. aggressive driving, to be fundamentally social because they refer to what a particular

society accepts. Thus we may say that RSS places an obligation to avoid aggressive driving while giving permission to

drive assertively. The RSS proposal is expressed in the language of continuous-time dynamical systems and ordinary

differential equations, but the rules to be followed are not formalized logically, so it is not possible to reason about them

or derive their logical consequences. This work complements the dynamical equations-based presentation of RSS in [39]

with a deontic logic formalism. We have three objectives in doing so: demonstrating the usefulness of DAU in a real use

case; highlighting the ambiguities implicit in such proposals, which would go unnoticed without formalization; and

automating the checking of logical consistency and deriving of conclusions. We first present the RSS rules in natural

language (Section 3.1), then their formalization (Section 3.2), and finally we analyze the rules’ logical consequences.

Three important points must be made:

(A) The formalization does not depend on the dynamical equations that govern the cars because we wish our conclusions

to be independent of these lower-level concerns. This is consistent with the standard AV control architecture where

a logical planner decides what to do next (‘change lanes’ or ‘turn right’) and a lower-level motion planner executes

these decisions. Our logical analysis concerns the logical planner.

(B) We are not trying to formalize general traffic laws [38] or driving scenarios, which is outside the scope of this

paper. We are only formalizing the RSS rules.

(C) Every formalization, in any logic, can always be refined. We are not aiming for the most detailed formalization; we

aim for a useful formalization.

3.1 The RSS rules

The rules for Responsibility-Sensitive Safety are [39]:

RSS1. Do not hit someone from behind.

RSS2. Do not cut-in (to a neighboring lane) recklessly.

RSS3. Right-of-way is given, not taken.

RSS4. Be careful of areas with limited visibility.

RSS5. If you can avoid an accident without causing another one, you must do it.

RSS6. To change lanes, you do not have wait forever for a perfect gap: i.e., you do not have to wait for a gap large

enough to get into even when the other car, already in the lane, maintains its current motion.

RSS6 is derived directly from the following in [39, Section 3]: “the interpretation [of the duty-of-care law] should lead to

[...] an agile driving policy rather than an overly-defensive driving which inevitably would confuse other human drivers

and will block traffic [...]. As an example of a valid, but not useful, interpretation is to assume that in order to be “careful”

our actions should not affect other road users. Meaning, if we want to change lane we should find a gap large enough
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8 Shea-Blymyer and Abbas

such that if other road users continue their own motion uninterrupted we could still squeeze-in without a collision.

Clearly, for most societies this interpretation is over-cautious and will lead the AV to block traffic and be non-useful.”

Note that, consistently with points (A)-(C) above, this is stated without any reference to dynamics or specific scenarios.

The RSS authors are concerned that overly cautious driving might lead to unnatural traffic, so RSS aims to allow cars to

move a bit assertively, and defines correct reactions to that.

Note finally that RSS4 is explicitly formulated in terms of obligations and ability. However, we will not study RSS4

and RSS5 as they are currently too vague for formalization.

3.2 Formalization of RSS Rules

Formalizing RSS1. Let ϕ denote ‘collision with car ahead of me’. A plausible formalization of RSS1 is then

RSS1. ⊙ [α cstit : ¬ϕ]

That is, α ought to see to it that there is no collision with a car ahead of it. A positive aspect of this formalization is that

if at somem, a rear-end collision is inevitable, then RSS1 ceases to hold: ∀ϕ =⇒ ¬ ⊙ [α cstit : ¬ϕ]. This provides an

automatic and interpretable update of control objectives. In a deployed system, an automatic proof engine could update

which obligations hold and which don’t, based on the current situation [3]. An alternative formalization is

RSS1r . ⊙ [α cstit : ¬[α dstit : ϕ]]

This says that α should see to it that it does not deliberately ensure an accident ϕ. This form of obligation is called

refraining [24]: α refrains from hitting anyone from behind. If a rear-end collision is inevitable at somem, then RSS1r

still holds (unlike RSS1) and is trivially satisfied. This might be computationally cheaper than having to use a proof

engine to tell us that the obligation no longer holds.

In the general case, some actions atm guarantee a collision, some guarantee no collision, and the rest don’t guarantee

either: the future could evolve either way. If we are interested in guaranteeing no collision over a long horizon, then,

because of non-determinism, it is unlikely that any action in the present moment can guarantee that. In such a case

RSS1 will be violated repeatedly in a rather trivial way; on the other hand, RSS1r is more permissive, since it can be

met by taking any optimal action that allows the possibility of no collision over the horizon. A lower-level controller,

running at a higher rate, could then ensure freedom from collision forever.

Formalizing RSS2. Define formulas,ψ : a non-reckless cut-in, andψr : a reckless cut-in. Then RSS2 is formalizable as

RSS2. ⊙ [α cstit : (ψ ∨ψr =⇒ ¬ψr )].

That is, α should see to it that always, if a cut-in happens, then it is a non-reckless cut-in.

Formalizing RSS3. Formalizing this rule requires some care. First, note that RSS3 should probably be amended to say

that ‘Right-of-way is given, not taken, and some car is given the right-of-way’ - otherwise, traffic comes to a standstill.

We will first focus on formalizing the prohibition (nobody should take the right-of-way), then we will formalize the

positive obligation (somebody must be given it).

Let Aдents = {α , β,γ , . . .} be a finite set of agents. Define the atomic propositions GROW α
β : β gives right-of-way to

α and pα : α proceeds/drives through the conflict region. ThenTROWα := pα ∧¬(GROW
α
β ∧GROW

α
γ ∧ . . .) formalizes

taking the right-of-way: α proceeds without being given the right-of-way by everybody. We could now express the
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prohibition in RSS3: every α ought to see to it that it does not take the right-of-way:

RSS3prohib0.
∧

α ∈Aдents
⊙[α cstit : ¬TROWα ] (7)

The difficulty with this formulation is that it could lead to α being obliged to force everybody else to give it the

right-of-way - something over which, a priori, it has no control. To see this, we need the following.

Proposition 3.1. Given obligations A and B, ⊙[α cstit : A∨B]∧(∀¬A) =⇒ ⊙[α cstit : B]

In words, if α ought to ensure A or B atm/h, but every available history violates A, then its obligation is effectively

to ensure B.

Proof. Assume thatm/h |= ⊙[α cstit : A∨B]∧∀¬A. By definition of the dominance ought, for allK ∈ Optimalmα ,K ⊆

|A∨B |m . And by definition of |A|m (Eq. 1), |A∨B |m = |A|m ∪ |B |m . We also have thatm/h |= ∀¬A, i.e.,m/h′ |= ¬A for

all h′ ∈ Hm ; thus |A|m = ∅. Therefore ∀K ∈ Optimalmα ,K ⊆ |B |m , which is the definition ofm/h |= ⊙[α cstit : B]. □

Applied to Eq. (7) with A = ¬pα and B = ∧β,α GROW α
β , Thm. 3.1 says that if α is in a situation where it has no

choice but to proceed (e.g. as a result of slippage on a wet road, say), then its obligation is to see to it that everybody

else gives it the right-of-way, which is unreasonable.

Instead, we adopt a more passive attitude: every agent sees to it that if they are not given the right-of-way, then they

do not pass. Letting atomic proposition дα denote that right-of-way is Granted to α ,

RSS3prohib .
∧

α ∈Aдents
⊙[α cstit : (¬дα =⇒ ¬pα )] (8)

The positive obligation, that somebody must be given the right-of-way, seems to be a group obligation: the group

must give right-of-way to one of its members. Group obligations are formally defined in [23, Ch. 6]. Then we formalize

RSS3pos . ⊙ [Aдents cstit : ∨α ∈Aдents дα ] (9)

This says the group Aдents has an obligation to give right-of-way to someone, and the only choice is in who gets it.

Finally, we formalize RSS3 as the conjunction of RSS3prohib and RSS3pos .

Formalizing assertiveness and RSS6. This rule says that if the car wants to change lanes, it shouldn’t have to wait

forever for the perfect gap (otherwise, traffic is stalled). It is one way in which RSS attempts to promote ‘assertive

driving’, a style of driving that tries to obtain right-of-way in a ‘polite’ way. The key difficulty, of course, is to distinguish

between assertive driving, which is acceptable, and aggressive driving, which is not. Deontic logic can help in that

regard.We model assertiveness as a permission to not drive conservatively or defensively. That is, if χ is a formula that

describes conservative driving behavior in a particular context Ω, then driving assertively is the conditional permission

P([α cstit : ¬[α dstit : χ]]/Ω) (10)

This is a permission: it does not constitute an obligation to drive assertively. Depending on its reward structure, the

agent might choose to drive conservatively after all. Importantly, Eq. (10) states that the agent can drive assertively

without violating any obligations it does have.

For RSS6, conservative driving consists in waiting for the perfect gap before passing, that is, waiting until the other

car, already in the lane, gives α the right-of-way. Thus we may take χ = дαR¬pα , where, recall, pα means ‘α proceeds
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10 Shea-Blymyer and Abbas

through the conflict region’ and дα means ‘α is granted the right-of-way’. Finally, withwα meaning ‘α wants to change

lanes’ we have

RSS6. P([α cstit : ¬[α dstit : дαR¬pα ]]/wα ) (11)

3.3 Application: undesirable consequence of RSS star-calculations

One of the main tenets of RSS is that an Autonomous Vehicle (AV) is only responsible for avoiding potential accidents

between itself and other cars (so-called ‘star calculations’); interactions between 2 other cars are not its concern [39,

Remarks 1 and 8]. Yet everyday driving experience makes clear that our actions can be faulted for at least facilitating an

accident: e.g., by repeated braking, I may cause the car behind me to do the same, leading the car behind it to rear-end

it. Or I might make a sudden lane change over two lanes, causing the car in the lane next to me to over-react when I

speed past it, and collide with someone else. We now show how this intuition is automatically captured by the DAU

logic, and that RSS star-calculations lead to undesirable behavior of the AV.

Let ϕ ∈ CTL∗ denote a formula expressing “Accident between two other cars”, and the accident is such that α

can facilitate it as in the above 2 examples. Then [α dstit : ϕ] says that α (deliberately) sees to it that the accident

happens even though it could avoid doing so; given what we assumed about this accident, this means α facilitates the

accident. Then [α dstit : ¬[α dstit : ϕ]] expresses that α sees to it that it does not facilitate the accident: this is a form of

refraining. Finally, [α dstit : ¬[α dstit : ¬[α dstit : ϕ]]] says that α refrains from refraining, that is, α does not refrain

from facilitating the accident (even though it could). The RSS position is that it is OK for α to refrain from refraining [39,

Remarks 1 and 8]. However, refraining from refraining is the same as doing. Formally [23, 2.3.3.]

[α dstit : ¬[α dstit : ¬[α dstit : ϕ]]] ≡ [α dstit : ϕ]

This matches our intuition: to not refrain from facilitating an accident even though one could (left-hand side in previous

equation) is the same as facilitating it (right-hand side). In other words, under this formalization, the RSS position is

tantamount to allowing AVs to facilitate accidents between others - clearly, an undesirable conclusion. This aspect of

RSS, therefore, needs refinement to take into account longer-range interactions between traffic participants.

4 OBLIGATION PROPAGATION

Obligations vary over time: the obligation at momentm is the set of necessary conditions (formulas in the tense logic)

satisfied by all histories optimal atm, and the set of optimal histories can change from moment to moment. There is

thus a need to understand how obligations change over time: for example if the agent does not act optimally atm,

does the obligation disappear at the next moment? Or does it persist, perhaps in a modified form? The formal study

of obligation propagation is also a way to interpret the temporal evolution of utility-maximizing controllers: as the

controller (and the environment) act, obligations change, placing new constraints on the controller.

The following examples show that these questions must be studied formally, since intuition usually fails us. Consider

the following tentative propagation pattern, in which ϕ is a CTL
∗
formula:

⊙ [α cstit : Xϕ] =⇒ X ⊙ [α cstit : ϕ] (12)

This says that an obligation now to ensure that ϕ holds at the next moment implies an obligation at the next moment

to ensure that ϕ holds, which sounds plausible. However, it is not valid in DAU. Fig. 2a gives a counter-example: K2

is optimal atm1 som1/h1 |= ⊙[α cstit : Xϕ]; howeverm3 is the next moment along h1 andm3/h1 ̸ |= ⊙[α cstit : ϕ], so

m1/h1 ̸ |= X ⊙ [α cstit : ϕ] and Eq. (12) is not valid.
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Fig. 2. Counter-examples to tentative obligation propagation patterns. (a) Pattern in Eq. (12); (b) Pattern in Eq. (13)

As a second example, the following tentative pattern says that if the agent has an obligation to ensure that ϕ

eventually holds, does not do so now, but it is still possible to do so at the next moment, then at the next moment the

agent still has an obligation to ensure eventually ϕ:

⊙ [α cstit : ϕ]∧¬[α cstit : ϕ]∧X∃[α cstit : ϕ] =⇒ X ⊙ [α cstit : ϕ] (13)

Fig. 2b shows a counter-example to this second pattern: we havem1/h2 |= ⊙[α cstit : ϕ], and thatm1/h2 |= X∃[α cstit :

ϕ]. If K2 will be taken, thenm2/h2 ̸ |= ⊙[α cstit : ϕ] because K3 is optimal atm2, so Eq. (13) is also invalid.

Both counter-examples exploited the fact that along them/h pair where the left-hand side is evaluated, the agent

acts non-optimally. This suggests that to derive valid temporal propagation patterns, we must assume the agent is

acting optimally. So we define the distinguished atomic proposition a∗ for this purpose:

m/h |= a∗ iff Choicemα (h) ∈ Optimalmα

The following pattern is valid in DAU. Letm+ (h) be the moment that followsm in h; e.g.,m+
1
(h1) =m3 in Fig. 2a.

⊙ [α cstit : Xϕ]∧ a∗ =⇒ X ⊙ [α cstit : ϕ] (14)

Proof. The pairm/h satisfies the left-hand side iff K ⊆ |Xϕ |m for all optimal K atm. By a∗, we have thatChoicemα (h)

is optimal, thusm/h |= Xϕ, which implies thatm+ (h)/h |= ϕ, which is the definition ofm/h |= X ⊙ [α cstit : ϕ]. □

Acting optimally is not always enough however. The following valid pattern says that if α ought to see to it that ϕ,

acts optimally, but it is impossible to satisfy ϕ now, then at the next moment α still ought to see to it that ϕ. Here,

∀¬ϕ is necessary in the antecedent: the implication fails trivially without it.

⊙ [α cstit : ϕ]∧ a∗ ∧∀¬ϕ =⇒ X ⊙ [α cstit : ϕ] (15)

Finally we present a pattern of obligation propagation which does not require optimal behavior, but which is only

satisfied in certain models.

Lemma 4.1. With ϕ,ψ CTL∗ formulas, letM be a stit model which satisfies the following constraint at every moment

m: for all actions K ∈ Choicemα s.t. K ⊆ |¬ϕ |m and which contain a history h s.t.m+ (h) |= ∃[α cstit : ψ ], it holds that all
Manuscript submitted to ACM



12 Shea-Blymyer and Abbas

optimal actions in Optimal
m+ (h)
α guaranteeψ . Then in such a model, the following is satisfied at every indexm/h.

⊙ [α cstit : ϕ ∨Xψ ]∧[α cstit : ¬ϕ]∧X∃[α cstit : ψ ] =⇒ X ⊙ [α cstit : ψ ] (16)

This says that if α has an obligation to ensure ϕ ∨Xψ , guarantees ¬ϕ now, but next it is still possible to guaranteeψ ,

then the next obligation is to guaranteeψ .

Proof. Letm/h be an index inM at which the DAU formula (16) is evaluated. Let Kh be the action to which h

belongs, and for brevity, writem′ =m+ (h).

Case 1: h ∈ ∪K ∈Optimalmα K . Then Kh ⊆ |ϕ ∨Xψ |m = |ϕ |m ∪ |Xψ |m . By hypothesis, Kh ⊆ |¬ϕ |m also so Kh ⊆

|Xψ |m \ |¬ϕ |m . By construction, Optimalm
′

α ⊆ Hm′ ⊆ Kh so for every K∗ ∈ Optimalm
′

α and every h′ ∈ K∗,m′/h′ |= ψ ,

which is the definition ofm/h |= X ⊙ [α cstit : ψ ].

Case 2: h < ∪K ∈Optimalmα K . From the formula antecedent, we have that Kh ⊆ |¬ϕ |m and thatm′/h |= ∃[α cstit : ψ ].

Therefore the model constraint yields that all optimal actions atm′ guarantee ψ , which is the definition ofm/h |=

X ⊙ [α cstit : ψ ]. □

Finally, the proof also establishes the following pattern.

Proposition 4.2. The following is valid (i.e., satisfied in all models) in DAU:

⊙[α cstit : ϕ ∨Xψ ]∧[α cstit : ¬ϕ]∧ a∗ =⇒ X ⊙ [α cstit : ψ ]

5 MODEL CHECKING DAU

The expressive power of DAU makes the logic a useful tool in the hands of a system designer. The system designer can

use DAU to specify the obligations the system ought to have. While DAU derives obligations from stit trees, control

engineers often model agents as some kind of automata. How then can we verify that the controller has the obligations

the system designer has specified? Note that having an obligation is not the same as meeting that obligation: the

obligation is a constraint that might or might not be met. This section’s algorithms verify that a system has a given

obligation, i.e. that it has the given constraints on its behavior.

We can ensure that an agent has an obligation by framing the question as a model checking problem. In this section

we cast agents as stit automata, and introduce novel algorithms to perform model checking for obligations. All proofs

not given here can be found in the supplementary material.

5.1 Stit Automata

For a set S , let Sω denote the set of infinite sequences (ai )i ∈N with ai ∈ S .

Definition 5.1 (Stit automaton). Let AP be a finite set of atomic propositions. A stit automaton T is a tuple T =

(Q,qI ,K , F ,∆,L,w, λ), where Q is a finite non-empty set of states, qI is the initial state, K is a finite non-empty set of

actions, F ⊂ Q is a set of final states, ∆ ⊂ Q × K ×Q is a finite transition relation such that if (q,K ,q′) and (q,K ′,q′)

are in ∆ then K = K ′, L : Q → 2
AP

is a labeling function, w : ∆ → R is a weight function, and λ : Rω → R is an

accumulation function.

When dealing with multiple automata, we will sometimes writeT .qI ,T .λ, etc, to clarify which automaton is involved.

Note that T is a type of non-deterministic weighted automaton. Its unweighted counterpart Tu is a classical transition

system, thus for a CTL
∗
formula ϕ, we could model-check whether Tu |= ϕ. Denote by ∆(q) the set of outgoing
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Fig. 3. Left: a stit model generated by executing the stit automaton T (transition weights not shown). Center and right: Automata Tn
and T ′n used in Algorithm 1. T1 only has K1 as first action, and T ′

1
is obtained by re-naming states of T1 and adding a copy of T1 to it.

Executions of T ′
1
are simply the execution of T that start with K1.

transitions from q (∆(q) = {(q,K ,q′) ∈ ∆}), by K (q) = {K ∈ K | ∃(q,K ,q′) ∈ ∆} the set of actions available at q.

Examples of λ include the functions min /max, discounted sum and long-run average:

min(ξ ) = min

i
w (ξ [i]) (17)

DiscSum(ξ ) =

∞∑
i=0

γ i ·w (ξ [i]) , 0 < γ < 1 (18)

liminfAvg(ξ ) = lim inf

n→∞

1

n

n∑
i=0

w (ξ [i]) (19)

Definition 5.2 (Execution). Let T be a stit automaton and q0 a state in Q . A q0-rooted execution ξ of T is a sequence of

transitions of the form ξ = (q0,K0,q1) (q1,K1,q2) . . . ∈ ∆
ω
. The corresponding sequence of actions K0,K1, . . . ∈ K

ω
is

called a tactic. The value of execution ξ = ξ [0]ξ [1]ξ [2] . . ., where ξ [i] ∈ ∆, is defined to be λ(w (ξ [0])w (ξ [1])w (ξ [2]) . . .),

and abbreviated λ(ξ ).

Because of non-determinism, a tactic can produce multiple executions. A set of agents is modeled by the product of

all individual stit automata, which is itself a stit automaton. (When taking the product, we must define how weights are

combined and how to construct the product’s accumulation function, which are application-specific considerations.)

Therefore the rest of this section applies to stit automata, whether they model one or multiple agents. We will continue

to refer to one agent α for simplicity.

From stit automata to stit models. An automatonT , along with a state q0 ∈ Q , induce a stit modelMT ,q0 in the natural

way, which we now describe somewhat informally: state q0 maps to the root moment 0 ofMT ,q0 . From q0, T has a

choice of actionsK (q0), which map to the actions available at 0 inMT ,q0 . Each actionK inK (q0) non-deterministically

causes one or more transitions, each of which maps to a moment inMT ,q0 ; all transitions caused by a given K map to

moments in histories that originate in the same action K inMT ,q0 . And so on from each next state. See Fig. 3 for an

example. We let η : ∆→ Tree denote the map from transitions to moments, and lift it to executions in the natural way,
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14 Shea-Blymyer and Abbas

i.e., η(ξ ) := η(ξ [0])η(ξ [1]) . . . By construction, η(ξ ) is a history inMT ,q0 . Its utility Value (η(ξ )) is the λ-value of the

generating execution, i.e., λ(ξ ). The atoms labeling η((q,K ,q′)) are v (η((q,K ,q′))) := L(q′). The formal construction

and proof of the following proposition can be found in the supplementary material.

Proposition 5.3. The structureMT ,q0 is a utilitarian stit model with finite Choicemα for every agent α and momentm.

Model-checking determines whether a stit automaton, at a given state, satisfies an Ought statement.

Definition 5.4. Given an automaton T , one of its states q, the induced modelMT ,q and an obligation A, we say that

T ,q satisfies ⊙[α cstit : A], written T ,q |= ⊙[α cstit : A], iffMT ,q , 0/h |= ⊙[α cstit : A] for an arbitrary history h ∈ H0.

The history h is arbitrary since the truth of ⊙[α cstit : A] does not depend on the history but only on the moment.

The construction ofMT ,q roots all histories at moment 0. However, what if the automaton can only reach state q

after i time steps? Then a priori, it might be that whether an Ought holds at q depends on i , because the accumulation

function λ can be time-dependent. The following shows that for certain accumulation functions important in practice,

the choice of root moment does not matter.

Proposition 5.5. Given a stit automaton T and an obligation A, let q,q′ be states of T s.t. q is reachable from q′ in i

transitions along an execution ξ . Let h be an arbitrary history ofMT ,q , let h′ = η(ξ ) be the history that connects η(ξ [0]) to

η(ξ [i −1]) inMT ,q′ , and letm′ = η(ξ [i −1]). Then, if λ is discounted sum or long-run average,MT ,q , 0/h |= ⊙[α cstit : A]

iffMT ,q′ ,m
′/h′ |= ⊙[α cstit : A]

Proof. For clarity, we writeM =MT ,q andM ′ =MT ,q′ , and writeM .() vsM ′.() to disambiguate something in

M vs something inM ′. We will show that the trees rooted at 0/h inM and i/h′ inM ′ have the same structure and

that the value ordering of their histories is the same in both models. This implies that the same Oughts hold at both.

The histories ofM are images, under η, of executions that start at q. Because transition ξ [i −1] ends in q, the histories

ofM ′ rooted atm′ = η(ξ [i − 1]) are also images of executions that start at q. Therefore,M ′.Hm′ is identical toM .H0.

In particular they satisfy the same set of CTL
∗
formulas. We refer to this common set of histories as H∗.

Take two arbitrary h1,h2 ∈ H
∗
and their pre-images ξ1, ξ2 by η. By construction, ξ [k + i] = ξ1[k] = ξ2[k], k ≥ 0,

and the concatenation fj := h
′
[0] . . .h′[i − 1]hj [0]hj [1] . . . is a 0-rooted history inM ′, j = 1, 2. If λ = DiscSum then

M .Value (hj ) =
∑
k≥0 γ

kw (ξ j [k]), whileM
′.Value ( fj ) =

∑k=i−1
k=0 γkw (ξ [k]) +

∑
k≥0 γ

i+kw (ξ j [k]). Thus

M .Value (h1) ≤ M .Value (h2) iffM
′.Value ( f1) ≤ M

′.Value ( f2)

Thus the histories in H∗ are identically ranked in both models, which implies that optimal actions are the same. This,

combined with the fact that they satisfy the same formulas, yields the desired conclusion.

Similarly, if λ is liminfAvg, then for j = 1, 2,

M ′.Value ( fj ) = lim inf

n→∞

1

n



∑
0≤k≤i−1

w (ξ [k]) +
∑
k≥0

w (ξ j [k])


= lim inf

n→∞

1

n

∑
k≥0

w (ξ j [k]) =M .Value (hj )

So histories of H∗ are identically ranked by liminfAvg in both models, yielding the desired conclusion. □

5.2 Model Checking of Unconditional Obligations

The problem of cstit model checking is: given a stit automaton T that models an agent α , a state q ∈ T .Q , and a formula

A which is either a CTL
∗
formula, or a statement of the form [α dstit : ϕ] or ¬[α dstit : ϕ] where ϕ is a CTL

∗
formula,

determine whetherMT ,q , 0/h |= ⊙[α cstit : A] for some arbitrary h ∈ H0.
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We restrict the algorithm to statements of the above forms for conciseness of the presentation; DAU formulas with

additional nesting levels can be handled by extending the algorithms we present below.

Recalling Definition 2.4, the cstit model checking problem can be broken into two parts: what is the set of optimal

actions at H0 (i.e. K ∈ Optimal0α ), and do all these optimal actions guarantee the truth of A (i.e. K ⊆ |A|M
0

)? If all

optimal actions guarantee A then, by Def. 2.4,MT has obligation A at 0/h. Algorithm 1 solves this problem, and is

discussed in depth below.

Proposition 5.6. Algorithm 1 returns True iffM, root/h |= ⊙[α cstit : A]. It has complexityO (2σ ( |T |+cλ + |T | · 2
|ϕ | )),

where σ is the maximum out-degree from any state in T , cλ is the cost of computing the minimum and maximum values of

a tactic executed on automaton T , |T | is the number of states and transitions in T , and |ϕ | is the size of the CTL∗formula in

A.

Algorithm 1 begins by considering each action available to the agent at root: Kn ∈ Choice
0

α . For each of these actions,

a version T ′n of the automaton T is constructed such that each of its executions is an execution of T starting with action

Kn . In this way we can determine the best (un ) and worst (ℓn ) possible values of the executions in each action Kn by

analyzing the automaton T ′n (this is discussed further in Section 5.2.1). With the range of values [ℓn ,un] known for

each action Kn , we find those ranges whose un is not less than any ℓ′n . These value ranges are un-dominated. The

optimal actions Optimal0α are those actions whose corresponding value ranges are un-dominated. This completes the

first step of the algorithm: finding the optimal actions at H0. The second step determines if all optimal actions guarantee

A. In this algorithm |=
CTL

∗ denotes the classical CTL
∗
satisfaction relation. If the obligation is a CTL

∗
formula, then we

simply check if every execution of T ′n satisfies the A by checking ∀A. If the obligation is a dstit statement containing

a CTL
∗
formula ϕ, then we must verify two conditions: that not all actions in Choice0α guarantee ϕ, so ∃¬ϕ, and that

every execution of T ′n with Kn ∈ Optimal0α satisfies ϕ.

5.2.1 Computing Extremal History Utilities. In line 8 of algorithm 1, the maximum- and minimum-valued executions of

an automaton T ′n must be found. This problem is related to, but distinct from, temporal logic accumulation [10] and

quantitative languages [15]. A realistic example of a λ that can be computed is λ = min. For instance, if a transition’s

weight w ((q,K ,q′)) is the time-to-collision when taking that transition, then the value of an execution λ(ξ ) is the

shortest time-to-collision encountered along that execution. The best history, then, is the one with the greatest minimum

time-to-collision. To compute λ(ξ ) for λ = min we proceed as follows. To avoid trivialities assume every cycle in Tn is

reachable. Every infinite execution visits one or more cycles. A simple cycle is one that does not contain any other cycles.

A prefix is a path connecting qI to a simple cycle, and which does not itself contain a cycle. We call an execution simple

if it only loops around one simple cycle forever, possibly after traversing a prefix to get there from qI . There are finitely

many simple cycles, and their prefixes are obtainable using backward reachability, so we can compute the value of

every simple execution by taking the min along every connected prefix-cycle pair. The value of a non-simple execution

ξ equals the value of some simple execution, since the transition of ξ with minimum weight is also a transition of a

simple execution, be it on a simple cycle or a prefix. Thus, the maximum execution value un equals the maximum simple

execution value. Similarly for the minimum execution value ℓn .

A second common accumulation function is the discounted sum function in Eq. (17). To find find the histories that

carry the highest and lowest values, we cast the automaton as an extreme case of a Markov decision process (MDP).
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Data: A stit automaton T = (Q,qI ,K , F ,∆,L,w, λ), an obligation A
Result:MT , root/h |= ⊙[α cstit : A]

1 Set root = 0

2 Set Choice0α = {K ∈ K | (qI ,K ,q
′) ∈ ∆ for some q′} = {K1, . . . ,Km }

// First step: find optimal actions at root

3 for 1 ≤ n ≤ m do
/* Construct automaton T ′n s.t. every execution of T ′n is an execution of T starting with

action Kn. See Fig. 3. */

4 Create automaton Tn by deleting all transitions (qI ,K ,q
′) with K , Kn

5 Create a copy T ren

n of Tn
6 Create the automaton T ′n as a union of T ren

n and T , with every transition (q,K ,T ren

n .qI ) in T
ren

n replaced by a

transition (q,K ,T .qI )

88 Compute the max value, un , and min value, ℓn , of any T
′
n tactic starting at qI

9 end
/* An interval [ℓn ,un] is un-dominated if there is no other interval [ℓ′n ,u

′
n], computed in the

above for-loop, s.t. ℓ′n > un */

1111 Find all un-dominated intervals [ℓn ,un]

1313 Set Optimal0α = {Kn ∈ Choice
0

α | [ℓn ,un] is un-dominated}

/* Second step: decide whether all actions K in Optimal0α guarantee A, i.e., K ⊆ |A|root . */

1515 for Kn ∈ Optimal0α do
16 if A is a CTL∗ formula then

/* Does every execution of T starting with Kn satisfy A? */

17 Use CTL
∗
model-checking to check whether T ′n |=CTL∗ ∀A

18 if T ′n ̸ |=CTL∗ ∀A // Optimal action Kn does not guarantee A

19 then
2121 return False

22 end
2424 else if A = [α dstit : ϕ] with ϕ ∈ CTL∗ then

// This is true iff H0 = |ϕ |0
2626 Model-check whether T |=

CTL
∗ ∀ϕ

/* This is true iff Kn guarantees ϕ, is not equiv. to line 26 */

27 Model-check whether T ′n |=CTL∗ ∀ϕ

28 if T |=CTL∗ ∀ϕ or T ′n ̸ |=CTL∗ ∀ϕ then
3030 return False

31 end
3333 else

/* Last case: A = ¬[α dstit : ϕ] with ϕ ∈ CTL∗. Similar to previous case on line 24 with

obvious modifications */

34 end
35 end
3737 Return True

Algorithm 1:Model checking DAU.

An MDP is a control process modeled in discrete time where actions are chosen by a decision making agent, the

outcomes of those actions are stochastic, and each outcome gives the agent some reward [6]. We specify the construction

of theMDPT cast from an automaton T in the supplementary material.
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Value iteration is a dynamic programming algorithm used to solve MDPs [36]. Solving an MDP generates a policy for

choosing an action at each state that optimizes some reward aggregation function λ. Following this policy from a given

state q (called an "optimal policy" and denoted by π∗ (q)) will produce the sequence of state transitions (denoted by

ω∗ (q)) that maximizes accumulated rewards. The expected accumulated reward for following an optimal policy from

q ∈ S is denoted by V ∗ (q).

Proposition 5.7. Given a stit automaton Tn , let T−n be a copy of Tn where the edge weights are negated, letMDPTn be

the stit MDP cast from Tn , and letMDPT −n be the stit MDP cast from T−n . Then, if λ is discounted sum, the extremal values

of Tn are un = V ∗ (qI ) inMDPTn and ℓn = −V ∗ (qI ) inMDPT −n

5.3 Model Checking Conditional Obligations

The problem of conditional cstit model checking is: given a stit automatonT that models an agent α , a state q ∈ T .Q , and

a formula A as in Section 5.2 (i.e. A is either in CTL
∗
, or a statement of the form [α dstit : ϕ] or ¬[α dstit : ϕ] where ϕ is

in CTL
∗
), and a finite-horizon formula B, determine whetherMT ,q , 0/h |= ⊙([α cstit : A]/B) for some h ∈ H0.

B is a finite horizon condition, meaning that there exists a τ ≥ 0 such that every history of length τ either satisfies or

violates B. We note that if B is a state formula, then either all q-rooted histories satisfy B or none do. To avoid such

trivialities, we only consider conditions that are specified by path formulae. In this section we introduce modifications

to algorithm 1 and its proof (in the supplementary material ) that reflect this difference in determining optimal actions.

Proposition 5.8. Algorithm 2 returns True iffM, root/h |= ⊙([α cstit : A]/B). It has complexityO (σ ( |T |+στ |T |22 |B |+

στ · cλ ) + σ |T |2
|ϕ | ), where σ is the maximum out-degree from any state in T , cλ is the cost of computing the minimum

and maximum values of a tactic executed on automaton T , |T | is the number of states and transitions in T , |ϕ | is the size of

the CTL∗ formula in A, and |B | is the size of the CTL∗ formula for the condition.

Conceptually, getting the histories that satisfy B can be done by brute force: unroll T ’s executions up to depth τ and

retain actions Kn ∈ Choice
0

α that contain B-satisfying histories. The values of these B-satisfying histories are compared

to determine conditionally optimal actions, as per Def. 2.2 and Eq. (6). Once the conditionally optimal actions are

determined, the algorithm continues as in Algo. 1.

The actual model-checker constructs incrementally automata T ′n,l : every such automaton has one initial action Kn ,

has a single execution up to the horizon τ , and behaves like the original automaton after τ . Its unique execution up to

τ satisfies B. Algo. 2 uses these automata to determine the conditionally optimal actions by comparing B-satisfying

histories, in the same way that Algo. 1 uses T ′n to compute (unconditionally) optimal actions. Alg. 3 shows how to

construct T ′n,l . Each T
′
n,l has two components: a "fragment" of |B | followed by a copy of T . The fragment is obtained by

beginning withT ′n , removing all transitions from qI except for one (qI ,Kn ,q
′), forming the union between the resulting

automaton and a copy ofT , and checking this new automaton to see if there exists an execution that accepts B. If it does

not, it aborts this branch (line 13). If it does, it sets qa = q
′
(that is, we change the state we remove transitions from)

and repeats the process of removing transitions, taking the union with T , and checking that the automaton accepts ∃B.

This process repeats a maximum of τ times, ensuring that the resulting automaton has a single history for τ moments,

and accepts B. This final automaton is T ′n,l .

6 CASE STUDY IN MODEL CHECKING SELF-DRIVING CARS OBLIGATIONS

As discussed in section 5, it is common for a control engineer to model agents as an automaton, and it is natural

to want to verify that the automata have some given obligations. The formalizations given thus far are required to
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Data: A stit automaton T = (Q,qI ,K , F ,∆,L,w, λ), an obligation A, a horizon-limited condition B, the condition’s
horizon τ

Result:MT , root/h |= ⊙([α cstit : A]/B)
1 Set root = 0

2 Set Choice0α = {K ∈ K | (qI ,K ,q
′) ∈ ∆ for some q′} = {K1, . . . ,Km }

// First step: find optimal actions at root

3 for 1 ≤ n ≤ m do
/* Construct automaton T ′n s.t. every execution of T ′n is an execution of T starting with

action Kn. This is exactly like lines 4, 5, 6 in Algorithm 1 */

/* Generate all automata whose first action is Kn and have one history up to depth τ ,

that history satisfies B, and after that, it behaves like T */

55 {T ′n,0, . . . ,T
′
n,l } = fragmentStep(T ′n ,B,τ , 1,qI )

// see Algorithm 3 for fragmentStep()

6 for 1 ≤ i ≤ l do
88 Compute the max value, un,i , and min value, ℓn,i , of any T

′
n,l tactic starting at qI

9 end
10 Set un = maxi (un,i ); Set ℓn = maxi (ℓn,i );

11 end
1313 Find all un-dominated intervals [ℓn ,un]

1515 Set Optimal0α /B = {Kn ∈ Choice
0

α | [ℓn ,un] is un-dominated}

/* Once all conditionally optimal actions are found, this algorithm proceeds exactly like

algorithm 1 starting from line 13 */
Algorithm 2: Conditional model checking DAU.

Data: A stit automaton T = (Q,qI ,K , F ,∆,L,w, λ), a horizon-limited condition B, the condition’s horizon τ , the
automaton depth i , an anchor state qa

Result: The set of stit automata that model fragments of |B |
1 Set {q1, . . . ,qm } = {q

′ ∈ Q | (qa ,K ,q
′) ∈ ∆ for some q′ and some K }

// First step: find condition accepting actions at current root

2 for 1 ≤ l ≤ m do
/* Construct automaton T ′l s.t. every execution of T ′l is an execution of T starting with a

transition to ql. */

3 Create automaton Tl by deleting all transitions (qa ,K ,q) with q , ql
4 Create a copy T ren

l of Tl
5 Create the automaton T ′l as a union of T ren

l and T , with every transition (q,K ,T ren

l .qI,a ) in T
ren

l replaced by a

transition (q,K ,T .qI,a ) where qI,a is any state on an execution from qI to qa
6 if T ′l |= ∃B then
7 if i < τ then
8 Return fragmentStep(T ′l , B, τ , i + 1, ql);
9 else

10 Return T ′l ;

11 end
12 else
13 Continue;

14 end
15 end

Algorithm 3: fragmentStep(T ,B,τ , i,qa ): Recursively generating fragments of |B |.
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reason about obligations while performing model checking and are a necessary component of our implementation To

demonstrate the practical uses of DAU, we developed a software implementation of the model-checking algorithms

of Section 5, and applied it to a controller for autonomous driving (adapted from [21]). We check the automaton for

relevant CTL
∗
missions, and for obligations and permissions related to the RSS rules.

6.1 Implementation

We implemented our algorithms for model checking obligations in Python, using calls to the nuXmv symbolic model

checker [14] to dispatch CTL
∗
model checking. Our implementation regards Stit automata models as directed graphs with

edges labeled with action and weight. Operations on the graphs allow us to copy and take unions of automata as needed.

The graphs can be translated to MDPs to find an action’s extremal history utilities, or to a nuXmv model for CTL
∗
model

checking. The source code for our implementation can be found at https://github.com/sabotagelab/MC-DAU.

6.2 Agent Model and Model Checking Results

A hybrid continuous-time controller for autonomous highway driving is presented in [21]. The controller is meant to

allow a car to merge onto a highway, and exit when desired. It is shown in [21] that if all cars are equipped with this

controller, then no collisions can occur and all cars either merge and exit successfully, or drop-out, meaning that they

safely abort the maneuver and go into the doNotEnter state. We modeled this controller in Fig. 4a as a stit automaton,

which we will refer to as α . Each state is labeled with the atomic propositions that hold in it, and edges are labeled with

α ’s actions, both of which are self-explanatory. The controller’s objective is to ensure safe entry, cruising, and exit;

it does not determine when to enter or exit. That is determined by a higher-level decision code and is captured here

with atoms wantEntry and wantExit. It is important to note that the collision state can be reached from almost every

other state: this reflects the understanding that if another agent, β , which is not equipped with this controller, takes a

reckless action then it is impossible for α to avoid an accident.

We will state a number of missions, obligations, and permissions, that we might expect this automaton to satisfy,

and model-check whether that is indeed the case. If not, we will amend the controller accordingly, thus demonstrating

the value of obligation modeling and verification.

Missions. We formulate the following missions in CTL∗5:

µ1 = ∃ (onHighway) (20)

µ2 = ∃ ≤4 (reachExit) (21)

µ3 = ∃ (¬collision) (22)

The existential quantifier is used since, as noted, freedom from collision is not satisfied on all paths.

The automaton depicted in figure 4a satisfies all the missions formulated above. The first mission (µ1) specifies that

the vehicle can eventually enter the highway. The second (µ2) states that the vehicle can reach the exit lane within four

units of time (where ≤n p means the proposition p must be met in n steps or fewer, and can be put in LTL syntax

using Next and a bounded counter variable). The third mission (µ3) specifies that there is a future where the vehicle

never collides.

Obligations. For convenience, we define the ‘Collision-Free’ subset of states CF := {doNotEnter}.

5
Arguably, a logic like ATL [2] might be more appropriate here, but our focus is on DAU model-checking.
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Fig. 4. Highway driving agent automaton. (a) Automaton for one agent α [21]. Each state is labeled with the atomic propositions
that hold in it, and each edge is labeled with its weight, and α ’s actions. Edges without action labels indicate loops in absorbing
states. The collide action can be taken from any state except doNotEnter, and so is denoted by the large arrow. The proposition дα
means the agent α has been given the right of way, while pα means that α is proceeding through a conflict region. (b) Modified
automaton adds an edge from passEntry to reachExit with action doNotYield. It also now models implicitly a second car β , via its
actions Drive and D-βaдд . Alternative weights are given in red brackets to make the automaton fail the “no next collision” obligation
and gain the “aggressive” permission.

No-collision: the role of modeling agency. The natural obligation ⊙[α cstit : ¬collision] is expected to fail in

all states not in CF since, as pointed above, there is nothing that α alone can do to guarantee no collision. Formally,

every action of α contains a history which satisfies collision at some moment. The model-checker returns UNSAT in

this case, as expected. Perhaps surprisingly, the conditional obligation ⊙([α cstit : ¬collision]/ ¬collision) also fails

in all states not in CF . This obligation says that under the condition that the collision state is never visited, α ought

to see to it that there is never a collision - which first sounds almost like a tautology. This is where DAU’s ability to

model agency proves essential for a proper understanding and formalization of individual obligation. Indeed, recall

that in DAU, an agent has an obligation to ensure A only if it can guarantee A regardless of what other agents do

(recall sure-thing reasoning and the definition of Statemα in Section 2). The condition ¬collision restricts our value

comparisons to those actions that permit the condition to hold (Eq. (6)). However, it is still logically false that α alone
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can ensure no collisions: none of the conditionally optimal actions available to α guarantees no collisions. Avoidance of

collisions is still a group task, i.e. both α and β must act to guarantee this - we take this up in section 6.3

No collision next. Are there any states not in CF at which the agent has an obligation not to collide next? To

answer, we model-check the obligation

⊙ [α cstit : X¬collision] (23)

The model-checker confirms that this obligation can not be satisfied from any state not in CF . Since the agent can’t

guarantee another car won’t collide with it, collision is included in the consequence of every action available.

Permission vs Eventually. Suppose the vehicle is actually an ambulance, that occasionally has to be able to exit

the highway early. We thus want to give it permission to exit early, without forcing that behavior, and while respecting

its obligations. So we model-check the permission

π1 = P[α cstit : ≤4 reachExit] (24)

from the start state (The number 4 is rather arbitrary and is meant to suggest ‘early’). The model-checker informs us

that the model does have this permission. Indeed, as long as the permission is checked from a state where reachExit is

reachable within n steps, the permission

P[α cstit : ≤n reachExit] (25)

will succeed for this automaton.

Assertive vs aggressive. Finally, we model-check the RSS6 permission at state passEntry.

π2 = P[α cstit : ¬[α dstit : дαR¬pα ]] (26)

The model-checker determines that this is satisfied. However, we can show that this is a trivial satisfaction, which

holds regardless of the weights. It is due to the fact that all executions of this automaton starting in passEntry satisfy

дαR¬pα . On the other hand, consider the following aggressive DAU statement:

π3 = P[α cstit : [α dstit : ¬(дαR¬pα )]] (27)

This says that α is permitted to deliberately ensure that its driving is not defensive; morally, this is a less defensible

permission. It does not hold because there is no action in this automaton that guarantees ¬(дαR¬pα ).

6.3 Modified automaton.

To draw out the effects of changing weights, we modify the automaton in Fig. 4a to get the automaton in Fig. 4b, which

varies in two ways. First, when the vehicle merges onto the highway it may choose to always yield to future traffic

(by doing a ‘civil merge’), or to allow not yielding (by doing an ‘uncivil merge’). Second, another agent β is modeled

implicitly, removing most transitions to the collision state. This represents the agent β avoiding collisions with agent α

by taking a drive action. The remaining transition to collision is taken when α chooses the do not yield action and β

chooses a determined β aggression (or D-βaдд ) action. We confirmed that this automaton still satisfies the mission

formulae µ1, µ2, and µ3.

No collision. With these changes, we can revisit the problem of specifying an obligation to not collide. While the

obligation ⊙[α cstit : ¬collision] still fails from start, it holds (though trivially) from the many states that no longer

have a path to collision. On the other hand, the obligation ⊙[α cstit : X¬collision] in equation (23) non-trivially holds
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from the passEntry state adjacent to collision. This is ensured by weighting the yield transition relatively heavily —

guaranteeing that the yield action is the only optimal action.

Permission vs Eventually. Suppose again this is an ambulance that occasionally needs to exit the highway early.

The permission P[α cstit : ≤n reachExit] no longer necessarily holds in states where reachExit is reachable within n

steps. We demonstrate this from the onHighway state reached by the civil merge action. By making civil cruise the

optimal action, we guarantee that the optimal histories spend at least one moment in onHighway before moving to

reachExit. This yields an ethically difficult position where an insistence on defensive driving negates the permission to

exit the highway early, though it might be needed.

Assertive vs. Aggressive. Finally, we model-check again the RSS-type permission in Eq. (26) from passEntry. This

does not hold in this model, as determined by the model-checker.Similarly, the permission in Eq. (27) does not hold

because no optimal action guarantees ¬(дαR¬pα ).

However, by changing the weights of this automaton as depicted by the red, bracketed weights in Fig. 4b, we can

satisfy permissions π2 and π3 at the cost of the “no next collision” obligation in Eq. (23). By ensuring that do not yield

is an optimal action, we know that not all optimal actions guarantee дαR¬pα (thus π2 is satisfied), and we know that

there exists an optimal action that guarantees ¬(дαR¬pα ) (thus π3 is satisfied). As a consequence of do not yield being

counted as an optimal action, the “no collision next” obligation fails.

7 RELATEDWORK

Deontic logic and autonomous systems ethics. The need to encode and study ethical and social obligations for

human-scale CPS is well-recognized [26, 27, 41], though little explored technically. This paper follows the logicist

program [11] in approaching this problem, within which the deontic family of logics takes pride of place having been

created specifically to reason about obligations. Standard Deontic Logic has many well-known paradoxes [22], which

have spurred the proposal of alternatives to remedy them [18]. Some variations are used to specify legal and software

contracts as in [35]. Alternating-time Temporal Logic (ATL) was proposed in [2] to reason about groups of agents, and

used in [12] to reason about strategic obligations, and it will be interesting to connect the modeling of agency between

DAU and ATL. Finally, RSS rules have been encoded in Signal Temporal Logic for the purpose of monitoring them over

linear traces in [7], but notions of obligation and uncertainty were not investigated.

Temporal propagation. The most relevant work on the propagation of obligations is [13], which takes a near-

product of Standard Deontic Logic and LTL to study propagation, and ends up with a semantics that resembles DAU

(albeit LTL is linear time). Works that integrate deontic and temporal modalities more generally include [20] (to specify

business processes), [37] for interpreted systems, and [1] for contextualized (normed) obligations.

Algorithmic aspects.Most of the work in deontic logic has been concerned with finding the ‘right’ axioms and

inference rules that formalize our intuition about obligations and permissions, with algorithmic aspects receiving

comparatively little attention. Broader work in normative multi-agent systems relies on simulation to study, for example,

ways in which social norms arise [9]. Decision procedures exist for some logics, like the KED theorem prover for

Standard Deontic Logic [4], and the decision procedures in [5]. There are even fewer implemented tools, such as

MCMAS, the OBDD-based checker in [29] for the logic of [37], and the implementation of dyadic deontic logic in

Isabelle/HOL in [8]. A proof system for a simplified version of DAU has been developed in [3, 33] to determine whether

certain obligations follow from others (a ‘trusted base’). We propose a model-checker, to determine whether a given

automaton has an obligation, by examining directly the values it assigns to its executions. In a deployed system,

theorem-proving and model-checking are likely to play complementary roles.
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Interpretability. In DAU, an agent that always performs optimal actions is one that always meets its obligations.

Therefore, DAU can be viewed, informally, as the logic of utility maximization. As such, it gives a logical interpretation

to the behavior of controlled systems that maximize long-term utility, such as [19]. This connects DAU to the field of

interpretable AI [25], albeit from a non-statistical perspective.

8 CONCLUSIONS

We have discussed and demonstrated the use of Dominance Act Utilitarian deontic logic for the formalization of

obligations and permissions for autonomous systems. We investigated the interaction of temporal and deontic

modalities to find patterns for temporal propagation of obligations. We expressed self-driving car obligations from RSS

in DAU, and found undesirable consequences of these norms. We introduced algorithms to allow system designers to

automatically determine if a system has an obligation, and demonstrated an implementation of these algorithms.

In the pursuit of an algorithmic account of a system’s obligations, it would be desirable next to synthesize given

obligations by automatically adjusting the weights. DAU could also be used in tandem with inverse reinforcement

learning to learn the obligations of an agent by observing its behavior. It will also be important to study the inheritance

of obligations between groups and individuals, i.e. knowing how the obligation of a group of agents impacts the

obligations of agents in that group. Since deontic logic was designed for the study of ethics, this work opens the way

for formal ethical analysis of autonomous system design. These considerations will help determine the suitability of

DAU, and deontic logic more generally, for the design and verification of autonomous systems.
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