
Spring 2018 – Special Topics in Embedded Systems

ESE 680: Digital Twins - Model-Based Embedded Systems

What does it take to design and implement life-critical software in an implantable
cardiac defibrillator?

How to certify that a car in autonomous cruise control mode will drive itself safely?

How do you develop and tune controls for skyscrapers with complex interactions with
the environment, occupants and equipment?

This course will lead you to modeling for verification, testing and control of such safety-critical
systems. The course is 50% theory covering the foundations of temporal logic, controls and
falsification and 50% practical skill development with the use of industry standard tools in
verification, testing and model-based development. In two month-long modules, we will cover
exciting applications of cyber-physical systems with in-depth modeling of implantable cardiac
medical devices and software and testing of advanced driver assistance software in automotive
controllers. The class will conclude with a research project around topics covered in class. This
course provides the foundations and tools for a career focus in model-based design of embedded
systems.

Instructors
Dr. Houssam Abbas habbas@seas.upenn.edu
Dr. Rahul Mangharam rahulm@seas.upenn.edu

• First-principle model

• Data-driven model

• Black-box model

• Timed automata

Modeling

• Formal specifications

• Classical controllers

• Optimization-based
controllers

Control Design
• Temporal logics

• Formal verification

• Falsification

• Automated testing

Verification /
Testing

• Code generation

• Software/Hardware in the
loop

• Real-time scheduling

Implementation

Module	A
Life-critical	medical	devices

Module	C
Building	modeling	and	control

Module	B
Safety-critical	automotive	control

mailto:habbas@seas.upenn.edu
mailto:rahulm@seas.upenn.edu

Spring 2018 – Special Topics in Embedded Systems

Module A: Modeling for Verification
Application: Life-critical implantable medical devices and their software

Objectives: Learning finite and timed automata, appreciating the utility and challenges of formal
proofs and model-checking.
Tools: UPPAAL model checker, Simulink
Models: Timed automata, deterministic automata

Life-saving medical devices, like pacemakers
and defibrillators, require a rigorous approach to
verifying their safety. Testing, in which the device
is fed different inputs and its behavior observed,
cannot guarantee correctness and freedom from
faults. Formal verification, on the other hand,
provides such a guarantee.

In this project, we will get an overview of the
fascinating computer models of the human heart
out there, and get a feel for their capabilities.
Then we will focus on timed automata, which
allow us to formally and rigorously prove freedom
from faults. The lessons and perspective you learn
in this project will be useful to you in almost any
embedded systems project you tackle in the
future.

Module B: Modeling for Testing
Application: Modeling for Testing

Objectives: Co-simulation with black-box models, find bugs with automated testing, code
generation.
Tools: Simulink, TORCS, Simulink Coder, TrueTime
Models: Simulation black-box model.
You like to play games, you like to race,
and you hate bugs. In this project, you will
learn how to connect your favorite
modeling and control design tool,
Simulink, to your favorite car racing
game, TORCS, to automate driving. Safety
and correctness have the highest priority,
but are difficult to guarantee with formal
verification due to the complexity and
hidden nature of black-box models. We
will employ an automated testing
technique based on formal logics to find
bugs in our controller design. Finally, we
will generate C code of the controller automatically from Simulink and inspect the effect of real-time
properties of the implementation on the control performance.

Spring 2018 – Special Topics in Embedded Systems

Prerequisites
Ordinary differential equations.
Notions of automata and finite state machines.
Working knowledge of MATLAB and Simulink, and general comfort in programming
Mathematical maturity: you are comfortable reading a proof, and have practiced proving minor
theoretical statements (e.g., you took a class in Theoretical CS, Abstract Linear Algebra, Graph
theory, Optimization, etc)

Grading Criteria

In-class participation: 5%

Scribing 5%

Module A – Modeling for Control: Energy-efficient buildings
The grade for this module breaks down as follows:

Worksheet and Lab 1: 25%
Worksheet and Lab 2: 25%
Worksheet and Lab 3: 25%
Worksheet and Lab 4: 25%

30%

Module B – Modeling for Verification: Cardiac implantable devices
The grade for this module breaks down as follows:

Lab 1: 25%
Worksheet 1: 5%
Lab 2: 25%
Worksheet 2: 15%
In-class presentation: 30%

30%

Research projects
Subjects to be decided

30%

Schedule

Date Case study Topic Assignment
January 11 Course Overview Course overview. Syllabus and

policies

January 16 Modeling for
Verification

Ad hoc pacemaker design: what
could go wrong?

January 18 Modeling for
Verification

Principled modeling of the
cardiac electrical activity

Worsksheet - PM Step
by Step

Spring 2018 – Special Topics in Embedded Systems

Lab 1: Modeling the
heart in Simulink

January 23 Modeling for
Verification

Simulink hands-on

January 25 Modeling for
Verification

Introduction to Linear Temporal
Logic.

January 30 Modeling for
Verification

Introduction to Linear Temporal
Logic (Cont’d)

Worksheet-LTL
problems

February 1 Modeling for
Verification

Basics of Model Checking finite-
state systems.

February 6 Modeling for
Verification

A guided tour of UPPAAL for
model-checking timed
automata

Lab 2 UPPAAL

February 8 Modeling for
Verification

A review of Lab 2

February 13 Modeling for
Verification

Various extensions of timed
automata and their tools
(parameter synthesis, SMC and
cost-optimal reachability).

Worksheet - Seminar

February 15
Note: Drop
period ends
Feb 16

Modeling for
Verification

Student Seminar

February 20 Modeling for
Verification

Student seminar

February 22 Modeling for Testing Introduction to automotive
control: car dynamics and
Adaptive Cruise Control

Worksheet:
Understanding ACC
Lab: Running ACC

February 27 Modeling for Testing Quantitative satisfaction of
requirements

March 1 Modeling for Testing Quantitative satisfaction of
requirements

Worksheet

March 3-11 Spring Break

March 13 Modeling for Testing Falsification as optimization
March 15 Modeling for Testing S-Taliro tutorial Worksheet:

Alternative
optimization methods
Lab: Specification-
guided testing

March 20 Modeling for Testing Student seminar: other
optimization methods

March 22 Modeling for Testing Student seminar: other
optimization methods

March 27 Research projects Project topics

Spring 2018 – Special Topics in Embedded Systems

March 29
NOTE: Last
day to
withdraw
March 30

Research projects Medical platforms

April 3 Research projects Other heart models Research plan due

April 5 Research projects Guided research
April 10 Research projects Guided research

April 12 Research projects Mid-project report back

April 17 Research projects Guided research
April 19 Research projects Student seminar

April 24 Course conclusion Wrap-up

Assignments
Most weeks, you will have a graded Worksheet and a graded Lab. The worksheet is a warm-up
on the week’s material, and is most like a homework where you have to solve pen-and-paper
problems, including some proofs. You will occasionally have an oral examination component,
where you meet with the TA or the instructors. The Lab is the bigger component of the
assignment (time-wise and grade-wise). Because this is a graduate-level class, some assignments
will require the students to read papers or perform small research projects and present the
results in class later.

Scribes
Every week will have two assigned scribes. As a scribe your responsibility is to take good notes
during the lectures, then transcribe these into Latex and produce lecture notes that you and
other students can use.
Both scribes should take notes. Then you meet after the lecture to compare notes and have one
version. I strongly recommend you do this right after class, while everything is still fresh. It is
also a great way for you to determine whether you understood everything.
 A portion of the grade will be assigned to scribing, and will depend on the quality of the notes.
A week’s scribe notes are due on the Sunday of that week.

Course website

We use Canvas to assign worksheets, labs, deliver slides, readings and
grades: https://canvas.upenn.edu/

You can use the course’s Piazza to answer each other’s questions. The instructors may chime in
from time to time.

Computing

Virtual Machine

https://canvas.upenn.edu/

Spring 2018 – Special Topics in Embedded Systems

For the Buildings and Automotive case studies (weeks 6 onwards) you will need to use the Virtual
Machine (VM). We have installed all the necessary software on the VM and made the appropriate
setups, which saves you time.

• Download and install VirtualBox: https://www.virtualbox.org/. Select the right installation
file for your OS.

• Link to the Virtual Machine
appliance: https://www.dropbox.com/s/5n3getp22ui6gi9/MBES2017.ova?dl=0

• Download the VM appliance file (.ova extension) to your computer. Open VirtualBox. Then
choose the menu File/Import Appliance... and follow the instructions to select the .ova file
you downloaded and create a virtual machine on your computer.

• Start the Virtual Machine. The default password is "mbes2017" without the quotes.
• To use Matlab, you will need a unique hostname (your ID) for the network license. We will

assign your hostnames later once we know who will stay in the course.
• To change the hostname of your VM, open the text file named "How to change hostname"

on your VM's desktop and follow the instructions therein.
• Make sure that you successfully change the hostname of your VM to your assigned

hostname; otherwise you will cause conflicts when you start Matlab and cannot do your
labs.

Install Matlab and UPPAAL on your own computer

For the Medical case study, you don't need the VM. Rather, you can use your own installs of
Matlab and UPPAAL. If you have your own machine:

• follow the instructions in this link to download, install, and activate your free Penn student
Matlab (including Simulink and
Stateflow): https://www.seas.upenn.edu/cets/software/matlab/student/

• Download and install UPPAAL on your computer from this
link: http://www.uppaal.org/ (use the stable version).

Computer Lab

The latest Matlab and UPPAAL are also installed in the Linux labs at Penn. Those are
Towne M70 and Moore 100A. After you login using your PennID:

• start a terminal: click on the icon in the lower-left corner (similar to the Windows Start
button) and type terminal. Hit enter.

• In the terminal, execute the appropriate command
o >> matlab
o >> uppaal

Also, Biglab and Speclab are remote Linux lab environments with special usage outlined below:
Biglab: http://www.seas.upenn.edu/cets/answers/biglab.html

Speclab: http://www.seas.upenn.edu/cets/answers/speclab.html

https://www.virtualbox.org/
https://www.dropbox.com/s/5n3getp22ui6gi9/MBES2017.ova?dl=0
https://www.seas.upenn.edu/cets/software/matlab/student/
http://www.uppaal.org/
http://www.seas.upenn.edu/cets/answers/biglab.html
http://www.seas.upenn.edu/cets/answers/speclab.html

Spring 2018 – Special Topics in Embedded Systems

Policies

Collaboration

You are allowed and encouraged to work together.

You may discuss the homework with other people to understand the problem and reach a
solution. However, each student must write down the solution independently, without referring
to written notes from others. I.e., you must understand the solution well enough in order to
reconstruct it by yourself. In addition, each student must write on their homework the names of
the people with whom they collaborated.

On each assignment, you should try to work with a different set of people, to maximize learning,
but this is optional, not mandatory.

Honor code

The purpose of problem sets in this class is to help you think about the material, not just give us
the right answers. You are encouraged to use online resources for learning more about the
material covered in class; however, you should not look for or use found solutions to questions
in the problem sets. Specifically, you must not look at any code that has been created to solve
the assignment, including solutions found on the internet to questions in the problem sets, code
created by a student in a previous class or code created by a current classmate. Cheating will be
punished according to university regulations as determined by the Office of Student Conduct.

If one student shares code with another on a different team, both the donor and the recipient of
the code are in violation of the Penn honor code and will be referred to the Office of Student
Conduct.

Late Policy

Assignments are, as a general rule, assigned on the first class of the week, and are due a week
after that, at midnight. You are allowed to turn in up to two late assignments in this semester.
Each of these two times, you can be 2 days late at the most. After that, every late day is penalized
by 20% of the full grade. Thus if the assignment is due on Tuesday, and you turn it in on Thursday,
you don’t lose any points. If you turn it in on Friday (=Tuesday + 2 days of grace + 1 day late), your
final grade will be Your Earned Grade - 20. On Saturday, it will be Your Earned Grade - 40. Etc.

	ESE 680: Digital Twins - Model-Based Embedded Systems
	Instructors
	Prerequisites
	Grading Criteria
	Schedule
	Assignments
	Scribes
	Course website
	Computing
	Virtual Machine
	Install Matlab and UPPAAL on your own computer

	Computer Lab
	Policies
	Collaboration

	Honor code
	Late Policy

