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1. INTRODUCTION

Model Based Design (MBD) and automatic code generationererning the development method-
ologies of choice for safety critical applications. Mosbprinently, such design methodologies have
been adopted by the automotive, medical and aerospacédriedMathworks 2011; Esterel Tech-
nologies 2011] where correctness of the end product is drmpaunt importance. The types of
systems in these industrial domains are particularly ehgihg because software is controlling the
safe operation of a physical system. Such systems are atsmias Cyber-Physical Systems (CPS).
One of the pressing challenges in the MBD of CPS is how to yéhni correctness of the developed
model of the system as early as possible in the design cycle.

In answering such a problem, one must first specify what ispgmagoriate mathematical model
that captures the behavior of the system and, second, wérasigpropriate specification framework
that has a nice mathematical structure that can help in zinglyhe mathematical model of the sys-
tem. One such popular mathematical framework for CPS mogléi hybrid automata [Henzinger
1996]. Unfortunately, in general, the verification problanhybrid automata is undecidable even
for simple safety requirements [Henzinger et al. 1998], tleere is no terminating algorithm that
can answer whether a CPS ever enters a set of bad states.allbusf research has focused on

This work was partially supported by NSF grants CNS-101747d CNS-1016994.

Author's addresses: H. Abbas, School of Electrical, Compuwind Energy Eng., Arizona State University; G. Fainekos,
School of Computing, Informatics and Decision Systems Efugzona State University; S. Sankaranarayanan, Depattme
of Computer Science, University of Colorado, Boulder; lngic and A. Gupta, NEC Laboratories America.

Permission to make digital or hard copies of part or all o$ thibrk for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit@nmercial advantage and that copies show this notice on the
first page or initial screen of a display along with the futhtion. Copyrights for components of this work owned by ahe
than ACM must be honored. Abstracting with credit is perecittTo copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this worlotiner works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., A@M, 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+1 (212) 869-0481, or permissions@acm.org.

© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10510@00000.0000000

ACM Transactions on Embedded Computing Systems, Vol. VNNd\rticle A, Publication date: January YYYY.



A:2 H. Abbas et al.

discovering the classes of hybrid automata where the saéeifjcation problem is decidable [Alur
et al. 2000] and on reachability analysis and testing basgithiques [Tripakis and Dang 2009].

However, in many cases, the system requirements extendesdind simple safety properties.
For example, we might be interested in conditional requéets such that “if the temperature in-
creases above 10 degrees and remains above 10 degrees forthemiit should be drop below 10
degrees within 2 min and remain below 10 degrees for 30mirchSpecifications can be captured
using Metric Temporal Logic (MTL) [Koymans 1990].

In this paper, we propose a technique for finding countergkasito (MTL) properties for CPS
through global minimization of @aobustness metricGlobal optimization is carried out using a
Monte-Carlo technique that performs a random walk over gaes of inputs consisting of initial
states, controls and disturbances. The robustness metfied the satisfaction of an MTL property
over a given trajectory as a real number, as opposed to the&onotion used in Logic. The sign of
the metric for a given trajectory and formulay indicates whethey satisfiesy (written asy = ).
Furthermore, “nearby” trajectories, defined using a medvier trajectories, whose distances from
y are smaller than its robustness also have the same outcomhe foropertyp asy.

Given a robustness metric, finding a counterexample to angivepertyp reduces to finding
a trajectoryy that minimizes the robustness score w.fThis can be viewed as an optimization
problem over the space of inputs of the system. However,dntjme, this optimization problem is
not necessarily guaranteed to be tractable. In almost sdls;ahe optimization problem (objective
function and constraints) cannot be written down in a cldsedtional form. Nevertheless, such op-
timization problems can often be solved satisfactorilyngdlonte-Carlo techniques that perform a
random walk in order to sample from a probability distrilbatdefined implicitly by the robustness
metric [Rubinstein and Kroese 2008]. Over the long run, #relom walk converges to a station-
ary distribution over the input space such that the neigidod of inputs with smaller values of
robustness are sampled more frequently than inputs wigetaralues. Furthermore, Monte-Carlo
techniques do not require the distribution itself to be knawa closed form. Instead, these tech-
nigues simply require the ability to compare the valuesdyaif the probability density function
at two given points in the search space. In practice, thisaesto simulating the system using the
sampled inputs.

The contributions of this work can be summarized as follows:

(1) We show that metrics used for robust testing naturalfindeobjective functions that enable us
to cast the problem of falsifying MTL properties into a glbbptimization problem.

(2) We demonstrate the use of hit-and-run Monte-Carlo sarafib carry out this optimization in
the presence of (possibly non-convex) constraints ovenghss.

(3) We extend our notions to CPS using quasi-metrics to geoginotion of robustness for hybrid
trajectories w.r.t properties that can involve discretevalt as continuous state variables.

Our approach is applicable even if the property has beengmaysing a verification technique.
In such cases, our technique obtains system trajectorastve low robustness values w.r.t the re-
guirementslin practice, finding non-robust trajectories may imply desiwith smaller safety mar-
gins. Traditional testing or verification techniques do cmasider such trajectories using Boolean
notions of temporal satisfaction. Our approach is readiyliaable toSimulink/StateflohM (S/S)
models, since simulating the system is the only primitivedezl. We have implemented our ap-
proach in the Matlab (TM) toolbox SALLIRo [Annapureddy et al. 2011] and use it to discover
counterexamples to MTL properties. We establish that remdalks guided by robustness metrics
can often falsify MTL properties that cannot be easily fédsi using blind (uniform random) search.

Preliminary results of this work have appeared in [Nghieral€2010], while the architecture of
ourtoolbox S-RLIR0 has appeared in [Annapureddy et al. 2011]. In this paperefeemulate the
problem and its solution into a more general framework, wesent the proofs that were omitted
from [Nghiem et al. 2010], we provide new hybrid metrics incen 4 and we perform more
thorough experimental analysis using our toolbox A-TRo.
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2. PRELIMINARIES

In this section, we provide a formal and concise definitiothef problem that this work addresses.
Then, we introduce metrics and we utilize them to providetioolous semantics for Metric Tem-
poral Logic (MTL) specifications over continuous time ties. We will be using the following
notation:R is the set of real number® is the closure of the reals, i.6:00, +00]; R is the set
of positive real numbers ani, its closure, i.e.R; = [0, +oc]; N is the set of natural numbers
(including0) andN,, = NU {400}; Z is the set of integers artfl,, = Z U {£o0}. Given setsA
andB, B defines the set of all functions frorhto B andP(A) denotes the powerset df

2.1. Problem Definition

In this work, we take a very general approach in modelingtiez¢ embedded systems that interact
with physical systems that have non-trivial dynamics. Ssigtems are also referred to as hybrid
systems or Cyber-Physical Systems (CPS). In the followirggwill be using the term hybrid sys-
tems since it is more concise. However, we would like to eauthe reader against associating
hybrid systems with hybrid automata [Alur et al. 1995] sittoe scope of our work is more general.
We view a systent as a mapping from a compact set of initial conditiocfgand input signals
U C U* to output signalg” %, Here, R is a bounded time domain equipped with a metiic U is
a compact set of possible input values at each point in timutispace) antt” is the set of output
values (output space). This view of a system is standardgjimats and systems [Lee and Varaiya
2003]. We impose four assumptions / restrictions on theegysthat we consider:

(1) The input signals (if any) must be parameterizable uaifigite number of parameters. That is,
there exist two parameter vectors= [\; ... \,,]7 € A, whereA is a compact set, and= [
...™m]T € R™ and a functioril such that for any: € U, there exist soma andr such that for
allt € R, u(t) = U\, 7)(¢).

(2) The output spac¥ must be equipped with a generalized mettiwhich contains a subspace
equipped with a metrid.

(3) For a specific initial conditiony and input signat:, there must exist a unique output siggal
defined over the time domaiR. That is, the systerk is deterministic and we implicitly assume
that the system does not exhibit Zeno behaviors [Lygerok 2083].

(4) For considering the convergence of our sampling scheraeassume that the space of inputs
is bounded and discretized to a large but finite set. In practiny representation of the input
through a vector of floating point numbers inside the compaotest be finite and, therefore,
implicitly discretizes the space of inputs. Thus, this aggtion does not pose a restriction.

Under Assumption 3, a systemcan be viewed as a functiaky, : X, x U — Y which takes
as an input an initial conditiomy € Xy and an input signal. € U and it produces as output a
signaly : R — Y (also referred to agajectory). When the output signals are only a function of
the initial condition, i.e. Ay, : Xy — Y, then the syster® is calledautonomousin either case,
the set of all output signals & will be denoted byZ(X). Thatis,£(X) = {y | 3o € Xo.Fu €
U.y = As(zo,u)} orin case of autonomous syste®d&) = {y | Jzo € Xo.y = Ax(x0)}.

Our high level goal is to infer the correctness of the systeby observing its response (output
signals) to particular input signals and initial condisoin particular, we are interested in finding
witnesses, i.e., output signals, which prove that a remerd or specification is not satisfied by the
system. The process of discovering such witnesses is yseérred to asalsification

Example2.1. As a motivating example, we will consider the Automatic Tamission example
which was also considered in [Zhao et al. 2003]. This is dfljgnodified version of the Automatic
Transmission model provided by Mathworks as a Simulink derfids a model of an automatic
transmission controller (See Fig. 1) with the following nifazhtions. The only input to the system
is the throttle schedule, while the break schedule is seilgitn O for the duration of the simulation

1 Available at:http://www.mathworks.com/products/simulink/demos.ht ml
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Fig. 1. A modified version of the Simulink (TM) Automatic Transiss Demo.
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Fig. 2. Example 2.1Left: The switching logic for the automatic drivetraiRight: A input signal and the corresponding
output signals that falsify the specification.

which is 30 sec, i.e., R = [0, 30]. Finally, the system has two outputs the speed of the engine
(RPM) and the speed of the vehielgi.e.,Y = R? andy(t) = [w(t) v(t)]T forall t € [0, 30].

Internally, the system has two 2 continuous-time stateatdes: the vehicle speedand engine
speedw. That is, for this example, the output of the system is theesamthe continuous state of
the system. Initially, the vehicle is at rest at time 0, i, = {[0 0]7} andzy = y(0) = [0 0]
Therefore, the output trajectories depend only on the igytal « which models the throttle,
i.e.,y = Ax(u). The throttle at each point in time can take any value betwe&ully closed)
to 100 (fully open). Namelyu(t) € [0,100] for eacht € [0,30]. We remark that the system is
deterministic, i.e., under the same inpitwve will always observe the same outgut

We will assume that a system specification requires that #hécle speed is always under
120km/h or that the engine speedis always below 4500RPM. Our goal is to falsify the above
specification. In other words, we would like to generatestasich that the vehicle speednd the
engine speed exceed the values 120km/h and 4500RPM, respectively. Stalsifying system
trajectory appears in Fig. 2.

The model contains 69 blocks out of which there are 2 integsdi.e., 2 continuous state vari-
ables), 3 look-up tables, 3 look-up 2D tables and a StateflmmtcThe Stateflow chart (see Fig. 2)
contains two concurrently executing Finite State Mach{i#&M) with 4 and 3 states, respectively.
Even though this is a small size model and the specificatiarsisnple bounded time reachability
requirement, it already exhibits all the complexities {hvavent formal modeling and analysis using
the state of the art tools, e.g., SpaceEx [Frehse et al. 2011] o
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Reachability requirements as described in Example 2.1 dsuftice to specify all system be-
haviors in practice. This is especially true for real-timebedded systems wherein richer properties
such as timing requirements, sequencing of events, conditrequirements, stability and so on
are equally important. Metric Temporal Logic (MTL) introcked by Koymans [Koymans 1990]is a
popular formalism that can express such properties. Owctilag in this work is to provide efficient
tools for the falsification of bounded time MTL properties @PS.

PROBLEM 2.1 (MTL FALSIFICATION). For an MTL specificationp, the MTL falsification
problem consists of finding an output signalof the systent: starting from some valid initial
statexy € X, under an input signak € U such thaty does not satisfy specificatign

An overview of our proposed solution to Problem 2.1 appeaars i
Fig. 3. The sampler produces a paitfrom the set of initial condi- Monte Carlo
tions and a vector of parameteyshat characterize the control input Sampling
signalu. These are passed to the system simulator which returns an —

execution trace (output trajectory). The trace is thenyareal by the .. " o j—_\
0

MTL robustness analyzer which returns a robustness vatuert, ;. sional « :ﬁj
the robustness score computed is used by the stochastitesamp E
decide on a next inputto analyze. If in this process, a fatsiftrace System T 2
is found, it is returned to the user, who can then proceedamie =
it inside the system modeling environment. output

4 9 signal 77 :I/\_/,\

In this paper, not only we provide an efficient solution toleon
2.1, but we are also able to provide a measure of how robusgly t |  Temporal Logic
system satisfies or not an MTL property. That is, our falsifoca Robustness
framework does not have to return the first falsifying trégeg it Minimum l Falsifying
detects, but it can continue searching for the least p@ssdilust  Robustness | Trajectory
system behavior. Similarly, even if the system is not fabife, our
tool returns the least robust correct behavior that wastideSuch  Fig. 3. overview of the solution
information can be valuable to the system designer. to the MTL Falsification of CPS.

2.2. Metrics and Distances

When given a collection of objects, it is frequently necegda reason about how “close” these
objects are to each other. In other words, we need a way toureascompute the distance between
any two objects in the collection. In mathematics, the distsbetween two objects that belong to a
setY can be quantified by a metrit The pair(Y, d) is called a metric space.

Metrics arise very naturally in control and analysis of phgksystems [Sontag 1998]. Interesting
metrics can also be defined in computation theory with a numobeiverse applications [Seda and
Hitzler 2008]. In either case, the interest in defining nostris usually to show that a function
is contractive (and, thus, to prove some notion of stabjisgntag 1998] or utilize a fixed-point
computation [Seda and Hitzler 2008]) or that we can definengerésting topology [Kopperman
1988]. Here, our interest in metrics is different. We areiiested in quantifying set membership
questions, i.e., how deep is the object within the set it hgsoor how far away is from the set it
should belong. At a high level, quantification of set membigrguestions is the subject of study in
fuzzy mathematics [Bandemer and Gottwald 1995]. The fureddai difference between fuzzy set
theory and our work is that fuzzy set theory abstracts awgyt@pological information regarding
the degree of membership. Such topological informatioritéd in our case as we will demonstrate
in Section 2.3. Next, we briefly review the notion of genearadi metrics and we refer the reader to
[Seda and Hitzler 2008] and the references therein for a ohetaled exposition.

Definition2.2 (Positively Ordered Commutative Mongid

— A semigroup(V, +) is a setV together with a binary operation such that (i) the set is closed
under+ and (ii) + is associative.
— A monoidis a semigroup which has an identity elemenite., foranyw € V,v+0=0+v = 0.
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— A commutative monoid a monoid whose binary operation is commutative.

— An ordered monoidV, +, <) is a monoid with an (partial) order relatict which is compatible
with +, i.e.,v1 < vy implieSv1 +v3 <X vy 4+ vs and’Ug +v1 v+ v for all U1, V2,03 € V.

— A positively ordered monoi$ an ordered monoid such that forale V, 0 < v.

Definition2.3 (Generalized Metrif. Let (V,+,=<) be a positively ordered commutative
monoid andY” be an arbitrary set. eneralized metrid is a functiond : Y x Y — V which sat-
isfies the following properties fay, y2, ys € Y: ldentity: d(y1,y2) = 0 iff y1 = y2, Symmetry:
d(y1,y2) = d(y2, 1), andTriangle Inequality: d(y1,ys) = d(y1,y2) + d(y2, y3)-

If V also has an absorbing elemeat i.e., forany € V,v+ 00 = co+v = oo, thend is called
an extended generalized metric. If tigmmetryeondition is dropped from the definition, theris
termed ageneralized quasi-metridf (V, +, <) is (R4, +, <) with the usual addition+ and total
order<, then we drop the term “generalized” from the terminologg danote the metric by.

Using a generalized metri¢, we can define the distance of a poing Y from a setS C Y.
Intuitively, this distance is the shortest distance frgito all the points inS. In a similar way, the
depth of a poiny in a setS is defined to be the shortest distance dfom the boundary of.

Definition2.4 (Distance, Depth, Signed Distance [Boyd and VandenbergB4]28). Lety €
Y be apoint,S C Y be a set and be a generalized metric dn. Then, we define the

— Distance fromy to S to bedistq(y, S) := inf{d(y,v’) | ¥ € S}, and
— Signed Distanc®istq(y, S) to be—distq4(y, S) if y ¢ S anddista(y,Y\S)ify € S.

We should point out that we use the extended definition ofesapm and infimum. In other
words, the supremum of the empty set is defined to be bottomegieof the domain, while the
infimum of the empty set is defined to be the top element of theailn. For example, when we
reason oveR, thensup () := —oo andinf §) := 4oo.

Also of importance is the notion of an open ball of radiusentered at a point € Y. Given a
generalized metrid, a radius € V and a poiny € Y/, the operz-ball (or neighborhood) centered
aty is defined aB3q(y,e) = {¢' € Y | d(y,y’) < €}. The previous definition of a neighborhood
includes all pointg/’ which have distance from less thare. Since in this work we also use quasi-
metrics, we also need the notion méighborhood-toThe neighborhood-to includes all poings
which have distance tgless thare. Similar toBq4, we defineNVq4(y,e) = {y' € Y | d(v',y) < ¢}.

Finally, in order to reason in time about the system behawiemeed to define metrics over signal
spaces. Ify andy’ are two system output signaysy’ : R — Y that take values in a generalized
metric space€Y’, d), we will usepq to denote the metripq (y,y’) = sup,e g {d(y(¢),y’(¢))}.

2.3. Robustness of Trajectories

With the help of metrics we can now provide a robust inteigdien (semantics) to MTL formulas.
Details are available in our previous work [Fainekos andp@a2009]. In this section, we refer to
output signals simply asignals

Definition2.5 (MTL Synta). Let AP be the set of atomic propositions ahdbe any non-empty

interval of R .. The setMT L of all well-formed MTL formulas is inductively defined as ::=
T|p|-¢|eVe|eUre wherep € AP andT is true.

For (real-time) hybrid systems, the atomic propositiom®lasubsets of the output spake An
observation ma@ : AP — P(Y) maps each propositigne AP to a setD(p) to a subset ot".
We require that for alp € AP, ) € O(p) C Y. We emphasize here that the results in [Fainekos
and Pappas 2009] require that the output spaceequipped with an extended meticin Section
4, we relax this requirement and we demonstrate how theséisese extended to output spaces
which are equipped with a generalized quasi-metric.

We provide semantics that maps an MTL formylaand a signaly(¢) to a value drawn from
the linearly ordered sé&. The semantics for the atomic propositions evaluateg foy consists of
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the distance between(t) and the se©(p) labeling atomic propositiop. Intuitively, this distance
represents how robustly the poiptt) lies within (or is outside) the s&D(p). If this distance is
zero, then the smallest perturbation of the pgim&an affect the outcome of € O(p). We denote
the robust valuation of the formulaover the signay at timet by [¢, O]4(y, t). Formally,[-, a4 :
(MTL x P(Y)AP) = (Y x R = R).

Definition2.6 (Robust Semantigs Consider a metric spa¢®’, d), whered is an extended met-

ric. Lety € YF, ¢ € RandO € P(Y)AF, then the robust semantics of any formylac MTL
with respect tgy is recursively defined as follows

[T,0la(y,t) ==+ o0

[p, Ola(y,t) :=Dista(y(t), O(p))
[¢1,OJa(y. t) = — [1, Olaly, t)
[p1 V w2, Olaly, t) :=max([e1, Ola(y, 1), [p2, Ola(y, t))
[p1 Uzp2, Ola(y, 1) :=  sup _ min([pz, Ola(y, '), inf [e1, Olalyt"))

tG(tJrRI)
wheret ¢ Randt +prZ = {7 |37 € T.7=t+7}NR.

Example2.7. The requirement expressed in natural language in Examplegh be formally
written as:¢5 T = OpfT v Opy'”, where each atomic propositigfi is mapped toO(pft?) =
[120, +00) x R andO(ps7) = R x [4500, +c0), respectively. From the designer perspective, it
might be easier to conceptualize the falsification problemi&st generation problem and, therefore,
pose the formal requirement as the negation of the behawabishe/he would like to observe, i.e.,
¢ = =(OpT A Op2T). Under the semantics of Def. 2.6, the two formulas are etpiva

For the purposes of the following discussion,(lgtt, O) = ¢ denote the standard Boolean MTL
satisfiability. For clarity in the presentation, we define Hatisfiability relation for the base case,
i.e., for atomic propositiong» € AP, (y,t,0) E ¢ if y(t) € O(p). Note that Boolean MTL
satisfiability reduces to an application of Def. 2.6 whetamnegation is defined to be the Boolean
negation and the metri¢ is the discrete metric: fog1, 42 € Y, d(y1,y2) = 0if y1 = y2 and
d(y1,y2) = Lif y1 # yo. Itis easy to show that if the signal satisfies the propersnits robustness
is non-negative and, similarly, it the signal does not gatise property, then its robustness is non-
positive. The following result holds [Fainekos and Papp92.

THEOREM 2.8. Given an output spac€’, d), whered is an extended metric, a formula
MTL, an observation ma@ € P(Y)4* and an output signay € Y%, the following hold:

(1) If (y,£,0) = o, then[y, Ola(y, t) > 0. Conversely, ifo, Olu(y, ) > 0, then(y, t, 0) |= ¢.

(2) If (y,t,0) ¢, then[p, Ola(y,t) < 0. Conversely, ifp, Ola(y,t) < 0, then(y,t,0) ¥ .

(3) Iffor somet € Rt, e = [p, Ola(y,t) # 0, thenforally’ € B,,(y, e]), we havey, t,0) E ¢
if and only if(y’, t, O) = ¢. |.e,e defines aobustness tubaround the trajectory such that other
“nearby” trajectories lying inside this tube also satisfy

Theorem 2.8 establishes the robust semantics of MTL as aahateasure of signal robustness.
Namely, a signal is robust with respect to an MTL specificationif it can tolerate perturbations up
to sizee and still maintain its current Boolean truth value. Alteimaly, a signal with the opposite
outcome foryp, if it exists, has a distance of at leasaway.

This is the main differentiating property from other workat also consider quantitative seman-
tics for temporal logics such as [de Alfaro et al. 2004; Laenéamd Kabanza 2000]. Namely, our
semantics maintain the topological information which carubed to define neighborhoods for sig-
nals, while in quantitative or fuzzy semantics such infatiorais lost. A more thorough comparison
with other quantitative logics is provided in [Fainekos &appas 2009].
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3. FALSIFYING SYSTEMS WITH METRIC OUTPUT SPACES

In this section, we provide the basic formulation of MTL féitsation as a global minimization of
the robustness metric defined in Section 2 when the outpuegpad) is a metric space, i.e., when
(Y,d) = (Z,d), and describe a Monte-Carlo technigue to solve this glopghozation problem.

Let> be a system as defined in Section 2.1. &k a given MTL property that we wish to falsify.
Given a signaly, we have defined a robustness meftic O], (y, t) that denotes how robustly
satisfies (or falsifiesp at timet¢. For the following discussion, we assume a fixed label fdagnd
always interpret the truth (and robustness) of MTL formwealuated at the starting tinte= 0.
LetD,(y) = [¢, O], (v, 0) denote the robustness metric founder these assumptions.

The robustness metrid, maps each output signglto a real number. The sign ofr indicates
whethery = ¢ and its magnitudér| measures its robustness. Ideally, for the MTL verification
problem, we would like to prove thatf, ¢ ) Dy (y) > ¢ > 0 wheree is a desired robustness
threshold. For the MTL falsification problem (Problem 2\l attempt to solve the problem:

Findy € L(X) s.t.D,(y) <0 (1)

More generally, given a robustness threshold 0, we would like to solve the problem:
Findy € £L(2) s.t.D,(y) <e 2

In this work, we provide a solution to either problem throtilgé optimization problem:
* = in D 3
y' =arg min o(y) 3)

If D,(y*) < €, then we have produced a counterexample that can be useelfogging.
In the following, we provide parameterizations of the shapace and a Monte-Carlo sampling
method that will help us solve (3).

3.1. Autonomous Systems

In case of autonomous systems, the space of output signats the true search space for this
problem. For instance, it is hard to explore the space dédtajies directly while guaranteeing that
each trajectory considered is valid. Fortunately, for detristic systems, we may associate each
input zp € X, with a unique trajectory and vice-versa. LeF,(zo) = Dy,(Ax(zo)) denote
the robustness of the trajectory obtained corresponditizgetinitial statery € X,. Therefore, the
optimization can be expressed over the space of inputslasvfol

Jnin F,(xo) (4)

The components of the vectog are the search variables of the problem and the optimizéion
carried out subject to the constraintsXf.

Continuous trajectories are hard to compute precisely) edeen the analytical form of the so-
lution of the system is known. Thus, trajectories have taapproximatednumerically. An ap-
proximatesimulation functionAy, that supportsobust evaluatiorof the given propertyy should
guarantee that for some finite sampliRgf the bounded time domaiR, for y = Ax(z,) and for
y = Ax(zo0), [0, Oa(y,t) — [0, Ola(y,t)| <€ forallt € R, for a sufficiently small positive.
Such a robust simulation function suffices, in practiceesmive properties that may be of interest to
the system designers. An appropriate simulation functionlae obtained for a large class of ODEs
using numerical simulation techniques of an appropriadeosuch aRunge-Kuttaor Taylor-series
methods with adaptive step sizes [Press et al. 1992]. Ngalertegration schemes can also be
adapted to provide reliable bounden the distance between the actual and the numerical solutio
Thus, the robustness vall@&,(y) can be approximated by a val@®&, (y) using the set of sample
pointsy obtained by a numerical integrator. Details on Hbw(y) can be computed can be found
in [Fainekos and Pappas 2009].
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Unfortunately, for a trajectory obtained as the output of a numerical integrator with known
error bounds, the trace distance function may no Iongesfyaf?ga(y) > 0 whenevery E o.
Instead, we may conclude the existence of some intérval, ;] for somee;, e > 0, such that
if D,(y) < —ea, theny t p and if D, (y) > €1 theny = . In general, we may not draw any
conclusions if—e; < D,(y) < e2. Furthermore, the bounds, e, are often unknown for a given
system. Nevertheless, the presence of such a bound imipdie still makes sense to perform the
optimization using a numerically simulated traject@ryThus, our optimization problem becomes:

o Fo(wo) = Jnin Dy (As(20)).- ©)
In practice, even minimally “robust” simulated trajecasiwill often be of great interest to system
designers even if mathematically speaking they do not tadtee property under consideration.

Remark3.1. If the user is willing to tolerate additional computatal cost, then it is possible to
bound the inaccuracies of the numerical simulation everutigk presence of floating-point errors
[Fainekos et al. 2009]. Then, these bounds can be used talprbwunds on the robustness of the
actual continuous-time trajectory [Fainekos and Papp88120

The resulting optimization problem (5) can be quite compiexikely to be convex for all but
the simplest of cases. Furthermore, the objective functidhough computable for any given input
through simulation, is not expressible in a closed formeBtly obtaining gradients, Hessians and
so on is infeasible for all but the simplest of cases. We nass@mt Monte-Carlo techniques that
can solve such global optimization problems through a remzed technique that mimics gradient
descent in many cases.

3.2. Monte-Carlo Sampling

The Monte-Carlo techniques presented here are basadaaptanceejectionsampling [Chib and
Greenberg 1995; Andrieu et al. 2003]. These techniques fiveténtroduced in statistical physics,
wherein, they were employed to simulate the behavior ofiglastin various potentials [Frenkel
and Smit 1996]. Variations of Monte-Carlo techniques ase alidely used for solving global opti-
mization problems [Rubinstein and Kroese 2008]. In thisgpape focus on a class of Monte-Carlo
sampling techniques known as Markov-Chain Monte-Carlo fME) techniques. These techniques
are based on random walks over a Markov chain that is definexdtg space of inputs.

We first present the basic sampling
algorithm for drawing samples from

ALGORITHM 1: Monte-Carlo sampling algorithm.

Input: Xo: Input Spacef (-): Robustness Function; a probability distribution and then the
Robustness thresholBS(-): Proposal Scheme technique ohit-and-runsampling that

Output: z € Xo respects the (convex) constraints on the

begin input space due toX,. Let f(z) =

Choose some initial input € Xo;
while (f(z) > ¢) do
/* Select 2z’ using Prop. Scheme */

Fo(xz) be a computable robustness
function, given a property. We seek

o« PS(z) to minimize f over the inputs in the
e } set Xy. We wish to sampleX, such
a < exp(=B(f(z') — f(2))); : / :
r < UniformRandomReal(0, 1) ; that any two pointsr, 2’ € XO/ with
it (" <a)then /= Accept proposal? =/ robustness valueg(z) and f(z') are
<z sampled with probability proportional
end to % wherej3 > O.is a “-temper-
end ature” parameter explained in the fol-
lowing.

Algorithm 1 shows the schematic implementation of the atjor. Each iteration of the sam-
pler generates a neproposalz’ € X, from the current sample using someproposal scheme
defined by the user (Line 3). The objectifér’) is computed for this proposal. Subsequently, we
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compute the ratioe = e—#(/(=)=f(*)) (Line 4) and accept the proposal randomly, with probability
a (Line 5). Note that ifa > 1 (i.e, f(«/) < f(z) ), then the proposal is accepted with certainty.
Even if f(2') > f(z) the proposal may still be accepted with some non-zero pilityalf the
proposal is accepted thert becomes a new sample. Failing thisremains the current sample.
In general, MCMC techniques require the design pf@posal scheméor choosing a proposal
given the current sample The convergence of the sampling to the underlying distidoudefined

by f, depends critically on the choice of this proposal distiiu

Proposal SchemeA proposal scheme is generally defined by a probabilityithistion P (2’| z) that
specifies the probability of proposing a new sample inpgiven the current sample In general,
there are two requirements that a proposal scheme needtsfy sa that its use in Algorithm 1
converges to the distribution defined pyz).

Detailed Balance.The detailed balanceequirement, see [Chib and Greenberg 1995]), we re-
quire thatf («')P(z'|x) = f(z)P(x|z).

Ergodicity. Given any two inputs:, 2’ € X, it should be possible with nonzero probability to
generate a series of proposals, ..., 2’ that takes us from input to 2. This is necessary in
order to guarantee that the entire input state space isedver

ConvergenceConvergence of the sampling scheme guarantees that ellgafter drawing a large
but finite number of samples, the distribution of the sampfg®oaches the distribution defined by
the robustness functigf We will discuss convergence under the simplifying but pcadly relevant
assumption of discreteness.

We assume that the space of inpiXig is bounded and discreteonsisting of a large but finite
number of points. This assumption is always relevant in iracsince the inputs X, that we
consider are finitely represented floating point numbeiiglina computer. As a result, the proposal
schemeP defines a discrete Markov chain on the space of inputs. Cganee of MCMC sampling
follows directly from the convergence of random walks onoglig Markov Chains [Randall 2006;
Chib and Greenberg 1995; Rubinstein and Kroese 2008].

The functionf (z) over X, induces a discrete probability distributiptw:) = e =3/, where
M is an unknown normalizing factor added to ensure that thbalilities add up to one. Suppose
Algorithm 1 were run to generate a large number of samplelset v denote the frequency function
mapping subsets of the input space to the number of times plsamas drawn from the set. Let
P(S) = >_,cs p(z) denote the volume of the probability function for a SeC X.

THEOREM 3.2. In the limit, the acceptance rejection sampling techniclmost surely) gener-
ates samples according to the distributipnP(.S) = IimNﬁm@

As a direct consequence, one may conclude, for instandegrthaputz; with f(z1) = —100is
more likelyto be sampled as compared to some other inpuwtith f(xz2) = 100 in thelong run

Itis possible, in theory, to prove assertions about the rermbof samples required for the sam-
pled distribution to converge within some distance to theirée distribution governed by 27 (*),
This rate of convergence is governed by thixing timeof the Markov chainon the inputs defined
by the proposal scheme. This time is invariably large (potgial in the number of input points),
and depends on the proposal scheme used [Randall 2006].

Importance of3: The overall algorithm itself can be seen aaadomizedjradient descent, wherein

at each step a new point in the search space is compared against the current sanmgeréba-
bility of moving the search to the new point follows an expuoiie distribution on the difference in
their robustness valueg:~ ¢~ #(/(@)=/()) |n particular, if f(z’) < f(z), the new sample is ac-
cepted with certainty. Otherwise, it is accepted with philitg ¢—7(/(=)=f() |nformally, larger
values ofg ensure that only reductions fdz) are accepted whereas smaller values correspondingly
increase the probability of accepting an increasgé(in). As a result, points with lower values ¢f
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are sampled with an exponentially higher probability as parad to points with a higher value of
the functionf.

Adaptings. One of the main drawbacks of Algorithm 1 is that, based onneaddi the distribu-
tion, the sampling may get “trapped” lacal minima This typically results in numerous proposals
getting rejected and few being accepted. Even though weltmmagteed eventual convergence, the
presence of local minima slows down this process, in practie therefore periodically adjust the
values of$3 (and also the proposal scheme) to ensure that the ratio eptat samples vs. rejected
samples remains close to a fixed valui@rn our experiments). This is achieved by monitoring the
acceptance ratio during the sampling process and adjustiaged on the acceptance ratio. A high
acceptance ratio indicates thaineeds to be reduced, while a low acceptance rate indicaes th
needs to be increased.

Proposal Schemedt is relatively simple to arrive at viable schemes for geatieig new proposals.
However, designing a scheme that works well for the undeglyroblem requires a process of
experimentation. For instance, it suffices to simply ch@smputz’ uniformly at random from the
inputs, regardless of the current sample. However, suchense does not provide many advantages
over uniform random sampling. In principle, given a currgrmpler, the choice of the next sample
x' must depend upon.

A typical proposal scheme samples from a normal distriloutio
centered at with a suitably adjusted standard deviation (using some
covariance matri¥{). The covariance can be adjusted periodically
based, once again, on the observed samples as well as tipteanee
ratio. A smaller standard deviation aroungields samples whose
robustness values differ very little frorfz), thus increasing the
acceptance ratio. However, it is hard to respect the cansttae  x+d,v
X using such a proposal scheme.

x+dyy

Hit-and-run proposal schemeHit-and-run schemes are useful in

the presence of input domains suchXas C R™. For simplicity, Fig. 4. Hit-and-run proposal
we assume thak is convex. Therefore, any line segment in somgheme.

directionv starting fromz has a maximum offset,; such that the entire segment betweeand
x + ov lies insideX,. At each step, we propose a new samgldased on the current sampte
This is done in three steps:

(1) Choose a random unit vectoruniformly (or using a Gaussian distribution) (Cf. Fig. 4i. |
practice, one may choose a random veétand generate a unit vector using= ﬁ

(2) Discover the intervald,,, das], such thatVvé € [d,,,0n], @ + dv € Xo. In other wordsy
yields a line segment containing the pointalong the directionstv and [6.,,,, d5/] represent
the minimum and maximum offsets possible along the diracticstarting fromz. If X is
a polyhedron, bounds,,,, §,/] may be obtained efficiently by using a variant of thenimum
ratio test For a more complex convex s&t, value ofé,,, (resp.dy;) may be obtained by solving
the one dimensional optimization problenin(max) § s.t. z 4+ dv € X, by using abisection
procedure given an initial guess @1, d /).

(3) Finally, we choose a valug € [4,,, 0] based on some probability distribution with a mean
around0. The variance of this distribution is an important param#tat can be used to control
the acceptance ratio (along wit) to accelerate convergence.

Hit-and-run samplers can also be used for non-convex inpotaihs such as unions of poly-
topes and so on. A detailed description of the theory behiati sampling techniques is available
elsewhere [Smith 1996; Rubinstein and Kroese 2008].

However, care must be taken to ensure that the input sigéenotskewedalong some direction
v’. In the worst case, we may imagidg, as a straight line segment. In such cases, the hit-and-
run proposal scheme fails to generate new samples. Thisisdied by adjusting the scheme for
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Fig. 5. (a) Time trajectory violating the property|o 5 —a, whereO(a) = [-1.6, —1.4] x [-.9, —1.1] along with the

scatter plot of sampled inputs and (b) robustness value @sctidn of the simulation step number.

selecting unit directions to take the skewX3§, embedding ofX, inside a subspace spanned by the
independent variables and, finally, applying a suitabledf@mation taX, that aids in sampling.

In practice, hit and run samplers can work over non-conviscothinected domains. Theoretical
results on these samplers are very promising. Smith [Sn@i8#]Lproves the asymptotic conver-
gence of hit and run sampling over arbitrary open subsdi'of ovasz [Lovasz 1999; Lovasz and
Vempala 2006] has further demonstrated convergence ind@me) for hit and run sampling of
uniform distribution over a convex body indimensions. Algorithms for global optimization such
ashide-and-seefRomeign and Smith 1994] arichproving hit-and-rurfZabinsky et al. 1993] have
combined hit-and-run sampling with Monte-Carlo to genegdbbal optimization techniques.

Example3.3. Lety(t) = [y1(t) y2(¢)]*. Consider the time varying system

dy(t) |9l y1(t) —ya(t) +0.1¢
dt dyst(t) | y2(%) cos(27ry2( )) —y1(t) sin(2wy1(¢)) + 0.1t
with initial conditiony(0) = zo € X, = [~1,1] x [—1,1]. In this caseY = R? and, thus, we
choose to use the Euclidean metric. We wish to falsify theperty Oy 5j—a, whereinO(a) =
[-1.6,—1.4] x [-.9,—1.1]. Our simulation uses a numerical ODE solver with a fixed titep sver
the time intervak € R = [0, 2]. Figure 5(a) shows the trajectory the falsifies our safebpprty
using the hit-and-run sampler and the scatter plot congisti the samples generated by the Monte-
Carlo sampler. Figure 5(b) plots the robustness of thediaijg at each simulation step. We observe
that the sampling is concentrated in the more promisingregin the set of initial conditions. ¢

3.3. Non-autonomous Systems

We now consider extensions to non-autonomous CPS. Agaiprégmatic reasons, we focus on
the approximatioy = Ax,(z, ) of the actual trajectory = Ax(x, u). Here, the input signal

is a discrete-time approximation of the actual continutine input signak.. Therefore, in a naive
search for a falsifying input signal, we may consider eachpdimg instance as a search variable.
However, such an approach is infeasible for long simuldiioes with fast sampling rates.

Our goal is to recast the search for control input signala terms of a search in the set of
parameters. € A andr € R™, wherem << |R|, i.e.,m is substantially smaller than the number
of samples fromR. Since we have assumed that the input signal space can begiarized om
andr, we can produce a discrete-time approximatioa ${(\, 7) to u = LU(\, 7) and, thus, we are
able to represent realistic input signals. Now, our optatian problem becomes:

f(zo, N\, 7) = min D, (A (0, 4N, 7))). (6)

min
<:Eo,>\,T>€X0><A><Rm <I[) )\T)GX()XAXR"L

In practical terms, there exist numerous ways to paranzetéhie space of control inputs. We
discuss a few such parameterizations below:
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Piece-wise Constant InputVe partition the overall time interva = [0, T] into a set of intervals
Ui~ [ri—1,7), whereinry = 0 andr,, = T'. For each intervalr;_1, 7;), i > 1, the controku(t) is
restricted to be a constant valyg_;.

Piece-wise Linear InputPiece-wise constant control may be extended to piecewisaticontrols.
Once again, we partitioR = [0, T'] into m disjoint intervals. For each intervgl, 1, 7;], we restrict
the form of each control input to be piece-wise linear, ifer,t € [t;—1,t;), we haveu(t) =
(1 — a(t))/\i_l + Oé(t))\i Wherea(t) = (_Ti—l)/(Ti — Ti—l)-

Spline FunctionsWe can choose a family of spline functiofis(A, 7). Details on utilizing splines
to represent control input signals can be found in [Egetsted Martin 2009].

Example3.4. In order to parameterize the input signal space of Examflew& used a piece-
wise constant signal with 7 control points uniformly distried over the time domaif, 30]. That
is, our search for a minima is performed over a bounded 7 déinaal space. Furthermore, since
the output spac#& is R2, we are using the Euclidean metric for the distance comiouisiin the
formula defined in Example 2.7. The outcome of SETRO appears in Fig. 2. As evident from the
figure, the vehicle speed and the engine rotation indeeth teacspecified thresholds. The Simulink
model was simulated 41 times for this particular test. o

4. FALSIFYING SYSTEMS WITH GENERALIZED QUASI-METRIC OUTPU T SPACES

In the previous sections, we demonstrated that MTL falgifioaof systems is possible as long
as we can define a non-trivial metric on the output space. Meryepecifications on CPS usually
have requirements on both the discrete output space of hersyand the continuous output space.
However, it is not straightforward to define metrics overtshgbrid (discrete & continuous) out-
put spaces. Therefore, in order to formulate and analyZe specifications, we need to relax our
constraint on the system having metric output spaces.

Example4.1 Let us revisit Example 2.1. We are looking to generate testh ghat the
system visits each state in the state chaftection state (see Fig. 2), i.e.steady _state,
upshifting and downshifting, when the vehicle speed exceeds In this case, the output
trajectoryy of the system model must not only contain information abbet physical system
quantities, i.e., engine rotation and vehicle speed, bt about the current state chart state
of the system. Therefore, the temporal logic analysis maspdrformed over the output space
Y = {steady_state,upshifting, downshifting} x R2. o

In this section, we first generalize Theorem 2.6 to signats generalized quasi-metric output
spaces. Then, we introduce the modeling formalism of hydwiidmata and two interesting gener-
alized quasi-metrics on output trajectories of hybrid audata.

4.1. Robustness of Signals over Generalized Quasi-Metrics Spaces

The only requirement in the definition of the robust semandtMTL formulas (Section 2.3) is
that both the trajectory under study and the specificatiakes values from the same space. We can
prove (see Appendix) by induction on the structure of forauthat Theorem 2.8 also holds in the
case where the metritis replaced by a generalized quasi-mettic

THEOREM 4.2. Given an output spadd’, d), whered is an extended generalized quasi-metric,
a formulay € MTL, an observation ma@ € P(Y)A” and an output signay <€ Y%, the
following hold:

(1) If (y,1,0) = ¢, then[p, Ola(y, 1) = 0. Conversely, if, Ola(y, ) = 0, then(y, £, 0) |= .

(2) If (y,t,0) ¢, then[p, Ola(y, t) = 0. Conversely, ifp, Oa(y,t) < 0, then(y,t,0) = .

(3) Ifforsometime € R, e = [p, Ola(y,t) # 0,thenforally’ € B,,(y. |¢]), we havey,t,0) =
pifandonly if(y’,¢,0) = ¢.
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Note that now the definition of the robustness valuationfiondor a formulap over a signay at
timet is a function[-, -Jq : (MTLxP(Y)AP) — (YR x R — V). The setV mustinclude the sét
of the positively ordered monoi@/, +, <) in the definition of the generalized quasi-metdi@and,
also, it must be ordered under the same ordering relatidfurthermore, appropriate definitions of
negation and absolute value are required as well as carefihtent of the absorbing elements (if
any). Essentially, we neg®, +, <) to be an Abelian group with two absorbing elemefits> .

4.2. Generalized Quasi-Metrics for Hybrid Signals

In order to define quasi-metrics for hybrid signals, we neetke into account some information
about the structure of the system that generates the ougmats. Here, we will be using a general-
ization of hybrid automata [Alur et al. 1995] as a basic modglanguage for CPS. We remark that
our formalism resembles more hierarchical hybrid systefhsr[et al. 2003]

Definition4.3 (Hybrid System A hybrid systent{ consists of components$i, Hy, Y, O, —,
G!, R, D, U), wherein,

— H = L x X is the state space of the system dnha a finite set of locationsnfodesor control
locationg,

— Hy C H represents the set of initial conditions,

—Y = L x Zis the output space, whe(#&, d) is a metric space

— O : X — Zis an output map,

— —C L x Lis a set of (discrete) transitions such that for eglgh¢s) €—, the system moves from
¢, € Ltoty € L if the output statee = O(x) of the system before the transition is in the set
G(/1, £2, z) and after the transition is at the poitit= O(z') wherez’ = R, 4, (7),

—G:LxLxX— P(Z)isthe guard set for the transitions between control loaatio

—R: (L x L) = (X — X) is the reset function for the transitions between contrctimns,

—D: L — (X x Rx U — X%)is amapping of each control locatiénc L to a deterministic
subsystem, which given an initial conditieg, an initial timet, and an input signal, returns the
unique state trajectory of the subsystem= D(zo, to, u), and, finally,

— U is the set of possible input signals.

We remark that our definition of a hybrid system allows eaatitra location to be any arbitrary
subsystem as long as it is deterministic and its state canllyedescribed by the functiob,. For
example, each control location can be a hybrid system as Wed reason behind utilizing such a
general model is that we are not necessarily interestectimtiole structure of the hybrid system,
but only on its part that is directly related to the functibsecification that we are trying to falsify.

Example4.4. The Simulink/Stateflow model in Example 2.1 has state-space
{first,second, third, fourth} x {steady_state, upshifting, downshifting} x R?.

In Example 4.1, the specification requirements focus onlyhenstate charselection_state.
Therefore, our hybrid system will have the following compats of interest:

— L = {steady_ state,upshifting downshifting} and— as defined in Fig. 2.
— X = {first, second, third, fourth} x R?, Z = R? andO is the projection of{ onR2.

The reset functioR changes the state of the state chgrar _state and the guards is com-
puted by theThresholdCalculation block in the Simulink model in Fig. 1. However, we are not
interested in the componerisandG in this example. o

A timed traceof a hybrid automaton is finite? sequence of statds, /,2) € R x L x Xof the
form (to, Lo, zo), (t1,¢1,x1), (t2, l2, z2), ..., such thatnitially, at timet,, we have((y, xo) € H,
and for each consecutive state pgit ¢;, z;), we

2Again, we implicitly assume that the system does not exHibito behaviors [Lygeros et al. 2003].
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— either make discrete transition frofnto £;, 1 and setc;1 = Ry, 4, ) (24)
— or we evolve under the subsystdh, from z; toz; 1, i.€.,z,11 = Dy, (z;, t;,u)(t; + 1).

A hybrid system?{ is deterministiciff starting from some initial statéty, ¢y, o) there exists a
unique timed trace. Given a timed trace, we can construcbaidhgystem trajectory : R — Y
by settingy (t) = (1(¢), z(t)) for t € [t;,ti11), wherel(t) = ¢; andz(t) = O(x(t)) with x(t) =
Dy, (z;,t;, u)(t). Therefore, again, we may view a hybrid system as a funclignfrom the set of
initial conditionsH,, and the input signallJ to output signaly .

Let Ay (ho, @) represent the approximate simulation function for a deirgistic hybrid system

H. We assume thahk, (ho, @) approximates the time trajectories with some given toleedsound

e by adjusting the integration method. In practice, this meyarder to achieve for hybrid systems
than for purely continuous systems due to the problem of sbbuent detection [Esposito and
Kumar 2004]. However, assuming that such a simulator idabiai (see [Sanfelice and Teel 2010]
for conditions), we may translate the trace fithess funatiefined for continuous simulations to
hybrid simulations with discrete transitions.

Specifications for hybrid automata involve a sequence @itlons of the discrete subsystem. The
simplest such property being the (un)reachability of amgitezror” location. As a result, continuous
state distance based on a norm (or a metric distance) dogis m@neral, provide a true notion of
distance between the specification and the trace. This ece&sdly true in the presence of discrete
transitions with reset maps. For the case of hybrid systeiths neset maps, the robustness met-
rics used in Section 3 cannot be used to compare the hybteks$taz) and (¢, 2) in terms of
some norm distance betweerandz’. Therefore, structural considerations based on the gtah t
connects the different modes of the hybrid automata have wohsidered while designing fitness
functions. We now consider (generalized quasi-) metrichjtrid automata.

First, we have to define what is the distance between two mofié®e hybrid automaton. We
claim that a reasonable metric is thlgortest path distandeetween two locations. A similar metric
was used for guiding the exploration in a model checker fdartdysystems in [Alur et al. 2003].
Intuitively, the shortest path distance provides us withemsure of how close we are to a desirable
or undesirable operating mode of the automaton. Such irgtomis especially useful in the class
of falsification algorithms that we consider in this paper.

In the following, given hybrid automatoH, we letI'(#) = (L, —) represent the directed graph
formed by its discrete modes and transitions. The shorteht gistance from nodéto node?’ in
the graph’(#) will be denoted byr (¢, ¢'). Note thatr (¢, ¢) = o iff there is no path fron? to ¢/
in the grapi’(H). It is well known (and it is easy to verify) that the shorteattpdistance satisfies
all the criteria for a quasi-metric.

The shortest path metric can be computed on-the-fly by rgnaiBreadth First Search (BFS)
[Cormen et al. 2001] algorithm on the graph. It is well knowattBFS runs in linear time on the size
of the input graph. However, it is preferable to use an aitgehortest path algorithm [Cormen et al.
2001] to precompute the distances between all pairs of gdotrations of the hybrid automaton. In
our implementation, we are using the Floyd-Warshall athamiwhich has running tim&(| L |?).

In order to reason over output trajectoriedn the hybrid state space, we need to introduce a
generalized distance function [Seda and Hitzler 2008]h&nfollowing, we will denote the hybrid
spacel x Z by H to indicate that a metric is defined over a particular spaeed}, : HxH — V°,
whereVs® = V. U (400,4+00) andV, = N x R, with definition forh = (¢,z) € H and
n =z eH,

dn(h, 1) = (0,d(z,2")) if ¢ =1
h 7% o <7T(£, ZI), mingneaNﬂ (.07 diStd(Z, G! (é, é”))> otherwise
wherer is the shortest path metrié,is a metric onZ andoN; (¢, ¢') = Nxt(£) NN (€', 7 (£, 2)).
Here,Nxt(¢) = {¢' € L | £ — ('} andG' denotes that the guard set may be changing with

respect to time. Informally)N (¢, ¢') is the “boundary” of all locations which are closerfc¢han
¢ and may be visited froni within one transition. Therefore, when the two poihtg:’ are in the
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same control location, then the distance computation esitecthe distance computation between
the points in the continuous state space. When the two plijntsare in different control locations,
then the distance is the path distance between the two ¢dmtations “weighted” by the distance
to the closest guard that will enable the transition to tha nentrol location that reduces the path
distance. Essentially, the last condition is a heuristit tives preference to shortest paths.

Next, we need to define an appropriate additierand a partial orde such that the triplet
(V4,+, =) is a positively ordered commutative monoid. First, the tiddiis defined component-
wise, thatis, fork,r) , (k',r') € V4, we define

(kr) + (K r') = (k+ K\ r +17)
The commutativity property is immediately satisfied. Setame order the set using the dictionary
order. Given(k, 7}, (k',r') € Z~, x R, we define the order relatior as

. k<k ifk#£K
(k) < <k,’rl>|ﬁ{r<r’ ifkik’

It is easy to verify that the dictionary order is compatiblghathe addition as defined fov ..
Hence,V has a smallest element, nameély= (0,0), andV3® has an absorbing element, namely
+o00 = (+00,+00), which is also the least upper bound. Finlay, PropositichiA.the Appendix
demonstrates that the generalized distaheatisfies the identity and triangle inequality properties.
In other wordsdy, is a generalized quasi-metric &h

The generalized distance functieh, requires computations of a point to each guard set in
a control location. This may potentially increase the cotafional load or it could be the case
that the computation of the distance to the guard might nopdsible (for example, in cer-
tain Simulink/Stateflow models). Therefore, we also introel the generalized distance function
df : H x H — V¢ with definition

0,d(z,2")) ife=1¢
A% (h, ') = { (m(£,0'),0) if £ # ¢ andr (£, ') < +o00
(+00,4+00) otherwise

In this case, the distance function ignores the guard seltsienply checks whether the 2 points are
in the same control location or not. The distance functifiris a generalized quasi-metric as well.
Therefore, we are in position to reason about hybrid systafadtories by utilizing the MTL
robustness Definition 2.6 and Theorem 4.2. Now the atomipgsitions can map to subsets of
H placing, thus, requirements not only on the continuougstptice, but also on the mode of the

hybrid system. Informally, a robustness valudefr) will mean the following:

—If k = 0 andr # 0, then we can place a tube of radiu$ around the continuous part of the
trajectory which will guarantee equivalence under the Mdtniula. Moreover, it is required that
at each point in time, the locations are the same for all such trajectories.

—If k£ > 0, then the specification is satisfied and, moreover, thedi@je is & discrete transitions
away from being falsified.

—If k < 0, then the specification is falsified and, moreover, the ttajy is k discrete transitions
away from being satisfied.

Remark4.5. Note that both functionBistq,, andDistdg never evaluate to some value of the

form (k, o00) with k € Z (see Proposition A.3). This is important because the teamigdogic
robustness value is now going to be a member of th&%et= VU {£oo} whereV = Z x R. In
order for the triple{V, +, <) to be an ordered Abelian group and, thus, the robust MTL s&osan
to have a proper definition of negation, each membé¥ afiust have an inverse. The negation for
the MTL robust semantics induced by the aforementionedicsat simply the pairwise negation.
In Proposition A.3, we also demonstrate how the distancetioms Disty, and Distdg can be

computed based on the well known understood distance ansidist,, andDist,.
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ALGORITHM 2: Parallel Monte-Carlo sampling algorithm.

Input: Ho x A x R™: Input Spacef(-): Robustness Function; Robustness Threshold,
PS(-): Proposal Scheme
Output: (h,A,7) € Ho x A x R™
begin
Choose some initial inputh, A, 7) € Ho x A x R™;
while (f(h, A\, 7) > ¢) do
/* Select (h',),7') using the Proposal Scheme */

(WX 7") = PS({(h, A\, 7)) ;

a1 < exp(=B1(fi(h', XN, 7") = fi(h, A, 7)));

Q2 < eXp(—,BQ(fQ(h/, A/7/7—l) - f2(h7 )‘7 T)))’

r < UniformRandomReal(0, 1) ;

it (AN, 7) = fu(h, A, 7)) A (r < a2)) V ((fr(B, N 1) # fi(h, A, 7)) A (r < 1)) then
<h7 A? T> <_ <h/7)\l77—l> ;

end
end

4.3. Monte Carlo Sampling

One of the issues that arise when giving generalized (orritdffrobust semantics to MTL formulas
is how to sample over the spaég x A x R™. Recall thatA x R™ is the space of parameters
that parameterize the input signals. In other words, whttagrobability distribution induced by
the robustness functiofi? In general, this issue can only be addressed in a casesbyscanario
depending on the generalized metlithat is utilized.

In this work, for the generalized quasi-metdg, we propose to use a Parallel Metropolis coupled
Markov chain Monte Carlo algorithm (see Algorithm 2). For@r (ho, A\, 7) € Hy x A x R™,
the robustness function is nofiho, A, 7) = Dy, (Ap(ho, (A, 7))). If f(ho, X\, 7) = (k,7) € V™,
then we defingf; (ho, A\, 7) = k € Zo, and fa(ho, A\, 7) = r € R. In brief, in Algorithm 2, an input
(h1, A1, 71) willbe more likely sampled over aninp(fiy, A1, 71), if f1(h1, A1, 71) = f1(h2, A2, 72)
andfa(hi, A1, 1) << fa(ha, A2, 72), OF, if fi(h1, A1, 71) # fi(he, A2, 72) @and fi(hy, A1, 71) <<
f1(ha, A2, 7). The discussion in Section 3.2 on the importancg ahd the proposal schemes still
applies. Similarly, we can define a sampling algorithm fer tietricdy.

5. EXPERIMENTS

We have implemented our techniques and, in particular, dve metrics inside our Matlab tool-
box S-TALIRO [Annapureddy et al. 2011]. Our toolbox is general enougmteract with vari-
ous means for modeling CPS including Simulink/Stateflow etl@d\e currently support full time
bounded MTL for continuous as well as hybrid time traje@sriWe remark that all the bench-
mark problems are distributed with SXLIRo at https:/sites.google.com/a/asu.

edu/s-taliro/ which also includes all the MTL specifications used in thisties.

We performed a comparison of our implementation (MC) adairssmple uniform random (UR)
exploration of the state-space. Both MC and UR are each menritaximum number of 1000 tests,
terminating early if a falsifying trajectory is found. Sm¢hese techniques are randomized, each
experiment was repeated 100 times (runs) under differetssim order to obtain statistically sig-
nificant results. Uniform random exploration provides agsidneasure of the difficulty of falsifying
a property over a given input. Its rate of success empigicplantifies the difficulty of falsifying a
given property. Finally, we have already argued about thgontance of obtaining the least robust
trajectory where falsification cannot be achieved. To thid, eve compare the set of minima found
using MC as well as that using UR and the corresponding rigniimes.

Table | reports on the results of our comparison on two bemekproblems using different MTL
properties or problem instances. The first benchmark prnolde¢he Automatic Transmission (AT)
model considered in Example 2.1. We consider a number of MjEci$ications of increasing diffi-
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Table 1. Experimental Comparison of Monte-Carlo (MC) vs. Uniform Random (UR) falsification on benchmark
problems with Euclidean output spaces. Each instance was run for 100 times and each run was executed for
a maximum of 1000 tests. Legend: #Fals.: the number of runs falsified, Robustness : (min, average, variance)
of the runs that were not falsified, Time: (min, average, max) time in seconds per run.

Problem P #Fals. Robustness Time (sec)
MC [ UR MC UR MC UR
AT ¢AT 97 | 100 (2.54,7, - (0.2,11,92) (0.2, 3,16)
1 48.5) o T
(3.03, 137,
AT 4T 96 | 100 6.6 - 104) - (0.2,16,94) | (0.2,10, 48)
AT (8-107%,0.42, (0.04, 0.96,
AT o 51 0 1.2) 0.35) (7,61,94) (93,94, 99)
AT (5.86,5.95, (5.91,6.06,
AT 7 0 0 0.02) 0.01) (92,93, 93) (92,92, 93)
AT (0.15,0.41, (0.25,0.57,
AT o 0 0 2.55) 0.06) (93,93, 94) (92,93, 94)
A—S (0.00, 0.04, (0.00, 0.01,
P[70_4570_45] dA—% 84 81 4.6-10-4) 1.2-10-4) (0.2,19,41) | (0.2,19,43)
A—S (0.00, 0.06, (0.00, 0.03,
P[fo.4,o.4] dA—% 58 40 7.9 10-4) 2.2.10-4) (0.7,26,39) | (0.3,30,38)
A—S (0.00, 0.07 (0.01,0.06
P[70_3570_35] dA—x 21 1 2.1-10-3) 7.9-10—4) (4.1,35,49) | (5.4,37,44)

Table Il. Experimental Comparison of Monte-Carlo (MC) vs. Uniform Random (UR) falsification on bench-
mark problems with hybrid output spaces. Each instance was run for 100 times and each run was executed
for a maximum of 1000 tests. Legend: #Fals.: the number of runs falsified, Time: (min, average, max)
time in seconds per run, MC-H: MC with metric dj,, MC-HO: MC with metric dg.

Problem P #Fals. Time
MC-H | MC-HO | UR MC-H MC-HO UR

AT 5T - 93 86 - (0.4, 24, 138) (0.4, 56, 139)

AT 7T - 94 55 B (0.1,25, 128) (0.6, 81, 127)

AT 5T - 0 0 - (110, 115,139) | (109,111, 115)
NVo,25) NV 63 68 34 (4.2, 542, 831) (34,545, 865) (44,623, 817)
NVig 19 [ ¢V 100 100 100 (1.1,24, 140) (1.7,25, 168) (0.9, 22, 108)
NVio12] | 85V 100 100 | 100 (0.8,8.7,62) (0.8,17, 503) (0.7,4.0,22)
NVio19 [ 87V 100 100 100 (1.2,18, 85) (1.4, 26, 66) (0.8, 35, 427)
NVio,12 | #8V 38 47 5 (21.0,419,595) | (15,390,584) | (9.4,404,437)

culty to falsify. As an example, formula!” is described in Example 2.7. The second benchmark
is a Simulink model of a 3rd ordex — X modulator whose description can be found in [Dang et al.
2004]. The 3rd ordeA — ¥ modulator has unknown initial conditions in the §et.1,0.1]® and a
one dimensional input signal that takes values in dsgtuy,]. The problem instances in Table |
indicate the bounds on the input sigfa),, u,s]. The specification for thé — > modulator is that
the state of the system should always remain in thé-skt1]3.

We find that the performance varies depending on the easewvitih the property can be violated
by means of uniformly sampling the input space. If the propean be easily falsified, then it is
advantageous to utilize uniform random search. MC for eashlpm instances seems to converge
and get trapped at local minima. In practice, we may peralbiceset the MC simulation using
random restarts. However, such restarts were not used iexparimental comparison. The use of
MC is clearly advantageous when the problem is challengmbard problem instances, MC can
falsify the specification when UR fails to falsify. Moreoyeren when falsification fails, MC still
computes lower minimum and average robustness valueshvatbteime computational cost. Further
experimental results that attest the same conclusionsecéoubd in [Nghiem et al. 2010].

Table Il compares the performance of the falsification atgor on benchmark problems with
hybrid output space. We compared UR with MC on two benchmewklpms on various temporal
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logic formulas of increasing difficulty to falsify. The firsenchmark problem was AT. As opposed
to the previous experiments, the specifications now not pfdge conditions on the continuous
state of the system, but also on the discrete locations. Asxample, formulayd” is informally
described in Example 4.1. Since 3{TiR0O does not support yet automatic extraction of guard
conditions, we compared only UR with MC using the medftfor the distance computations.

The second example that we consider is the Navigation (N¥¢heark problem from [Fehnker
and Ivancic 2004]. This is a hybrid automaton benchmadbf@m and both the control locations
and the guards of the transitions are available to us. Thas;ampared the performance of the
Monte Carlo sampling algorithm under the metribs andd? with the performance of Uniform
Random sampling under thé, metric. The problem instance that is used in our experimisnts
presented in [Nghiem et al. 2010].

First, we observe that on easy problem instances,@",-¢2'V, the performance of all algo-
rithms is comparable in terms of computation time. On haabfam instances, both MC-H and
MC-HO outperform UR in terms of numbers of falsifications.

The experimental results indicate that the best way to ambrbybrid system falsification / verifi-
cation is with a layered approach. Assuming that at theainitesign stages the errors are abundant,
then it is preferable to run random sampling for the falsifta process. As the system design
becomes more mature, then Monte Carlo sampling with the netiea introduced in this paper
can be utilized for the falsification. When the level of corfide in the system design has increased
and potentially the system design is robust enough, thetiabigner may use a reachability analysis
algorithm (for example SpaceEx [Frehse et al. 2011]). Haxeve remark that currently reachabil-
ity analysis tools cannot handle arbitrary MTL specificaioA more detailed discussion on system
verification that compares the advantages/disadvantdgatsiication and reachability methods
can be found in [Abbas and Fainekos 2011a; 2011b].

6. RELATED WORK

Due to the known undecidability results in the analysis dbriy systems [Alur et al. 1995] and
the state explosion problem of the reachability computagigorithms (see [Julius et al. 2007] for
some related references), a lot of recent research adii@gyconcentrated on testing approaches to
the verification of continuous and hybrid systems [Kapirgtlal. 2003; Zhao et al. 2003].

The use of Monte Carlo techniques for model checking has beesidered previously by Grosu
and Smolka [Grosu and Smolka 2005]. Whereas Grosu and Smofisider random walks over
the automaton defined by the system itself, our techniquaeefandom walks over the input state
space. These are, in general, distinct approaches to theproln practice, our approach does
not have the limitation of being restricted by the topolodythe system’s state transition graph.
Depending on this topology, the probability of visitingtstadeeper in the graph can sometimes be
quite small in pathological cases. On the other hand, Groslistechnique can be extended readily
to the case of systems with control inputs without requiarfgnite parameterization of the control.
We are currently investigating the possibility of combipinoth types of random walks in a single
framework. Previous work by some of the authors in this warksidered Monte-Carlo techniques
for finding bugs in programs [Sankaranarayanan et al. 260X}iever, our previous efforts did not
have the systematic definition of robustness that we empog.h

There exist two main approaches to the testing problem ofithydystems. The first approach
is focused on choosing inputs and/or parameters in a syttefashion so as to cover the state-
space of the system [Esposito et al. 2004; Bhatia and Fric2@04#; Branicky et al. 2006; Nahhal
and Dang 2007; Plaku et al. 2007]. These approaches areynigiséd on the theory of rapidly
exploring random trees (RRTs). The other approach is basatienotion of robust simulation
trajectory [Donzé and Maler 2007; Girard and Pappas 2Q@#slet al. 2007; Lerda et al. 2008]. In
robust testing, a simulation trajectory can represent ghtigirhood of trajectories achieving, thus,
better coverage guarantees. Recently, the authors in [Blaalg 2008] have made the first steps in
bridging these two aforementioned approaches.

ACM Transactions on Embedded Computing Systems, Vol. V\drticle A, Publication date: January YYYY.



A:20 H. Abbas et al.

On the research front of falsification/verification of temgddogic properties through testing, the
results are limited [Plaku et al. 2009; Rizk et al. 2008; E&ws et al. 2006]. The work that is the
closest to ours appears in [Rizk et al. 2008]. The authorkaifwork develop a different notion of
robustness for temporal logic specifications, which is aksed as a fitness function for optimization
problems. Besides the differences in the application domias., [Rizk et al. 2008] focuses on
parameter estimation for biological systems, whereas apepdeals with the falsification of hybrid
systems, the two works have also several differences ah#wdtical and computational levels. At
the theoretical level, we have introduced a new metric fdarttyspaces which enables reasoning
over hybrid trajectories, while at the computational levet approach avoids set operations, e.g.,
union, complementation etc, which, in general, increasetmputational load.

Younes and Simmons, and more recently, Clarke et al. haympea the technique &tatistical
Model CheckingSMC). SMC targets stochastic system models such as cant#time Markov
chains [Younes and Simmons 2006] or Stochastic Hybrid AatanfSHA) [Clarke et al. 2009].
For example, in order to model imperfect sensors in Examgdlev?e may add Gaussian noise to
the sensor that reads the engine speed. Then, the resyistemswould be a SHA. The goal of
SMC is to asses the probability that a system satisfies a grodrabilistictemporal logic property
. This probability can be safely approximated using Wald@babilistic ratio test. SMC, like our
technique, requires a simulator to be available for theesgsbut not a transition relation repre-
sentation. In contrast to SMC, our approach is guided by astoless metric towards less robust
trajectories. On the other hand, the complex nature of tiseery and the robustness metrics im-
ply that we cannot yet provide guarantees on whether ourighgo has converged to the global
minimum of the temporal logic robustness function. Howethgs is an on-going endeavor.

Remark6.1. Our method does not try to assess the probability afriilbut to detect a failure.
That is, our goal is to provide the engineer with tools in orgledetect design problems in the
system rather than perform a failure analysis. In our fraoréwif a failure is detected, then the
designer has a counterexample to work with in order to “débug system. Moreover, if a failure
is not detected, then the designer is still provided withi¢ast robust behavior found. The fact that
the system might be correct with probability one does notyrtipat the system isobustlycorrect.
Therefore, we view SMC and our approach as complementaan MBD cycle, the model should
be first assessed for its robustly correct behavior, and, tnéailure analysis should be performed
under various failure models and requirements.

7. CONCLUSIONS

Embedded systems require the verification of elaborateifgaions such as those that can be
expressed in MTL. The undecidability of the MTL verificatiproblem over such complex contin-
uous systems mandates the use of lightweight formal metthadsisually involve testing. In this
paper, we have presented a testing framework for the Megopbral Logic (MTL) falsification
of hybrid systems using Monte-Carlo optimization techeigiurhe use of hit-and-run Monte-Carlo
optimization is required in order to overcome the difficedtin handling the complex system dy-
namics as well as the nonlinearities in the objective fumctMoreover, in order to enable more
efficient search in hybrid state-spaces, a generalizedrdistfunction was introduced.

Experimental results indicate the superiority of our tegframework over random search on the
hard benchmark examples. The advantages of our approaobtdimited only to the fact that we
can falsify arbitrary systems, but also that we can provadmistness guarantees even to systems
that have been proven correct. The techniques and the neethatiwere introduced in this paper
have been implemented in our Matlab toolbox SLTRO [Annapureddy et al. 2011].
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APPENDIX
PROOF OFTHEOREM4.2. The proof is by induction on the structure of the formula

(1) We will present only the base cases, since the other eaisgdentical with those in the proofs
in [Fainekos and Pappas 2009] and [Fainekos and Pappas. 2006]
—If [p,Ola(y,t) > 0, then by definitiorDistq(y(t), O(p)) > 0, which implies thaty (¢) €
O(p) and, thus, thaty, ¢, O) = p.
—If (y,t,0) [= p, then by definitiony (t) € O(p), which implies thatlepthy (y(t), O(p)) =
Dista(y(t), O(p)) = 0, and, thus, thafp, Ola(y,t) = 0.
Note that the equality in the first case fails when the sigaslery (¢) is right on the boundary
of the setO(p), i.e.,y(t) € 0O(p). If [p, OJa(y,t) = 0, then we cannot distinguish whether
(v:1,0) Epor(y,t,0) p.
(2) Similar to the previous proof.
(3) We will present the base case and the negation (the o#isesscare based on the definition of
supremum and infimum over the partial ordeof d and are similar to the negation).
— Base case:
—If [p,O0la(y,t) = € = 0, then(y,t,0) = p and by definitiondepthy(y(¢), O(p)) =
e > 0, which implies thatBa(y(t),e) C O(p). Sincey’ € B,,(y,c), we have
pa(y,y') = supep d(y(t),y'(t)) < . Thatis,d(y(t),y'(t)) < ¢ and, thusy'(t) €
Baly(t).¢) C O(p). Hence(y'.1,0) = p.
— Similar to the previous case.
— Negation:
— Positive case: If-¢, O]a(y,t) = € = 0, then (i)(y,t,O) = ¢, i.e.,(y,t,O) |~ ¢, and
(i) [¢,Ola(y,t) = —e < 0. Then, by (ii) and the induction hypothesis we have that for
ally’ € B, (y,e), (y,t,O) F~ ¢.
— Negative case: Similar to the previous case.

We chose to present negation in order to demonstrate theepiiegp that the negation must sat-

isfy. O
PROPOSITION A.1. The generalized distance functidg is a quasi-metric.

PrRooF We will need to demonstrate that the identity property dradttiangle inequality hold.
In the following, we leth; = (¢;,2;) € Hwithi=1,2,3.

Identity: Sincer is a quasi-metric, we have(/1,¢2) = 0iff ¢; = ¢2. Sinced is a metric, we
haved(zl, 22) = 0iff 21 = 29. Hence,dh(hl, h2) = <O, O> iff h1 = ho.

Triangle Inequality: We need to show that for all;, ko, hy € H, dyn(h1, h2) < dn(h1, hs) +
dn(hs, ha). We proceed by case by case analysis:
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(1) Casety = £5 = {3: Then,
dn(h1,he) = (0,d(21,22)) < {0,d(z21, 23) + d(z3, 22))
= (0,d(z1, 23)) + (0,d(23, 22)) = dn(h1, h3) + dn(hs, he)
(2) Casely = {5 # 5: Then,w(¢1,¢3) > 0 andn(¢3,¢2) > 0 and
dn(h1, he) = (0,d(21, 22)) < (m(l1, £3) + 7(l3, €2),0) < (7(€1,3),0) + (7(l3,(2),0)

S <7T(€1, 63), ée@i/?,i(léll,ég) diStd(Zl, Gt (61, é))> + <7T(€3, éz), geawai(Igls)gz) diStd(Zg, Gt (63, é))>

= dn(h1, h3) + dn(hs, ho)
(3) Case/q 75 2 and {1 = {3: Then,

dh(h,l, hg) = <7T(€1, 62), leaNmi(erl 22) diStd(Zl, Gt(él, 6))>

BUt,?T(él,ég) =0+ 7T(€3,€2) = 7T(€1,€3) + W(ﬁg,éz), and, also,

in  disty(z1, G (1,0) = in  inf{d(z, € G4y, 0
peoitin | dis a(z1, G ({1, 1)) eewmﬁl,ez)m{ (21,2) | 2 (41, 0))}

< i inf{d(z1, d(z3, € GH(ly, ¢
< eoipin | inf{d(z1,2) +d(z3,2) | 2 € G, 0}
=d(z1,23) + ZGBJ{fnﬂi(Il}l,l2)inf{d(23, 2) |z € GH(£1,0)}

1=V . .
(1=fs) d(z1, z3) + eeaNm,,l(It}g,fg) dist (23, G'(¢3,0))
Thus dh h1, h2 <7T fl, fg min diStd(Zl, Gt(gl, f))>
668/\/ (51752)

. . t
7T fl,fg + 7 fg,fg) (21,23)—i—leaNmﬂl(rl}hb)dlstd(z&G (fg,f))>

Md(21723)> + <7T(€3,£2), min diStd(Zg,Gt(€3,f))>
LEON L (£1,42)
= dh(hl, hg) + dh(hg, hg)
(4) Casely # £s and 5 = (3: Then,

dh(h,l, hg) = <7T(€1, 62), Zea/\r}li(rgll ) diStd(Zl, Gt(él, 6))>

IN

/\/\

But,ﬂ(fl,fg) = W(f1,€3) +0= F(gl,fg) + W(fg,fg), and, also,
. . (L2=L3) . .
dist G'(lr,0)) "= dist Gy, 0
ccorlh o) Bt GELO) 7=, IR, 4y dista(en GT(BL0)
< i dist Gl ¢ d
> Eeaﬁfnﬂl(rfll,fg) 1S d(zlv ( 1 )) + (23722)

sinced(zs, z2) > 0. Thus,

dn(h1, he) = <7T(€1’€2)’g6a/\r}ﬁ(rgl , )diStd(ZlaGt(glvé))>
< <7r(€1,€3) + W(£37£2)7668/{/ni(161 , )distd(zl, G'(¢1,0)) + d(z3, 22)>
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éEBN,,(Zl,Zg
= dn(h1, h3) + dn(hs, ha)
(5) Case/q 75 by, V1 75 /3 and £l 75 l3: Then,ﬂ(él,ég) < 7T(£1783) + 7T(€3,£2), and

0
= <7r(€1,€3), min )distd(zl,Gt(fl,Z))> + <7T 3, d(23,22)>

dh(h,l, hg) = <7T(£1, éz), Zea/{[ﬂi&ll ) diStd(Zl, Gt(ﬁh é))>

< <7T(£1,f3) + 7T(€3,€2),0> = <7T(£1,£3),0> + <7T(£3,£2),0>

< <7T(€1, l3), ZGBJ{fI,lri(Illl,%) disty(z1, G' (41, é))> + <ﬂ'(£3, ls), ZeaNmﬂi(IZg,l2) disty(z3, G (43, é))>

= dh(hl, hg) + dh(hg, hz) O
PrRoPOSITION A.2. The generalized distance functidf is a quasi-metric.
PrROOF The proofis similar to the proof of Proposition A.10

PrRoOPOSITION A.3. Let the current point beh = (¢,z) and O(p) = L, x Z,, then
Distqo (h, O(p)) # (k, +o0) for anyk € Z. Similarly for Dista,, (h, O(p)).

PROOF. Actually, we will show thaDist 4o (h, O(p)) = (k, £o0) iff k = +oo.

(1) h ¢ O(p) and? & L, and if L, is not reachable frond, then for any?’ € L,, we have
(0, 0") = +o0. Thus,ON= (€, ') = O andmingconr, o,y distq(z, G'(£,£")) = +o0. Hence,
Distaq, (h,O(p)) = —dista, (h,O(p)) = (—00, —00). Also, Distgo (h, O(p)) = (—o0, —0)
by definition.

(2) If h ¢ O(p) and?¢ ¢ L, and if L, is reachable front, thend N (¢, ¢') # 0 since (i) at least
one of the neighbors of will have distance ta., less thandist.(¢, L,) and (ii) we have
assumed thaG'(¢,¢") # ( for all ¢/ € Nxt(¢). Then,distq(z, G!(¢,¢")) < +oo for all
0" € ONZ(0,0). Lett* € argmin{(m (¢, '), mingrconr, (0,0 dista(z, GI((,£"))) | £ € Ly}
and setd* = ming o, (r,0+) disty(z, G*(¢,£”)) < +oo. Therefore,Distq, (h, O(p)) =
—distq, (h, O(p)) = (—(¢,£*),—0"). Finally, by definition, we hav®istqo (7, O(p)) =
—distq, (h, O(p)) = (—dist, (¢, L,),0).

3) If h & O(p), butt¢ € L, i.e.,z € Z,, thenDistq, (h,O(p)) = —distg, (h,O(p)) =
—dista, (b, (Lp\{€} x Z,) U ({£} x Z;,)) = — min{dista, (h, L, \{¢} x Z}), dista,, (h, {{} x
Zy)} = —distq, (h,{¢} x Z,)} = (0, —disty(z, Z,)). However,dist,(z, Z,) < +oo since
0 C O(p) C'Y by assumption. Similarly foDistgo (h, O(p)).

(4)If h € O(p) and Z, C Z, then Distq,(h,O(p)) = depthy (h,O(p)) =
dista, (h, Y\O(p)) = dista, (h, (L\Ly) x Z)U (L x (Z\Z,))) = min{dista, (h, (L\L,) x
Y),distq, (h, L x (Z\Z,))} = dista,(h,L x (Z\Z,))} = (0,distq(z,Z,)) sincel €
L, C L. Howeverdisty(z, Z,) < +oo since C O(p) C Y by assumption. Similarly for
Dist o (h, O(p)).

(5) If h € O(p) andZ, = Z, i.e., L, C L, thenDistq, (h,O(p)) = depthy (h,O(p)) =
distq, (b, Y\O(p)) = dista,, (h, (L\Lyp) X Z)U(L x (Z\Z,))) = dista, (h, (L\L,) x Z)U
(L x 0)) = dista, (h, (L\L,) x Z)}. Now, we have two cases:

—if L\ L, is reachable frond, then as in case (2), we hali¥istq, (h, O(p)) = (7 (¥, £*),0*)
with 6* < 4o00.

—if L\ L, is not reachable from, thendist. (¢, L\L,) = +oo and as in case (1), we also have
ONL(£,0") = forall ¢/ € L\L,. Thus,Distg, (h, O(p)) = (+00, +00).

Similarly, we can derive the value ®istqo (h, O(p)).

This concludes the proof since we have considered all pessiises. O
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