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ABSTRACT
In multi-agent systems, robots transmit their planned trajectories to

each other or to a central controller, and each receiver plans its own

actions by maximizing a measure of mission satisfaction. For mis-

sions expressed in temporal logic, the robustness function plays the

role of satisfaction measure. Currently, a Piece-Wise Linear (PWL)

or piece-wise constant fit is used at the receiver to reconstruct the

continuous-time signal from the received samples. This allows an

efficient robustness computation algorithm - a.k.a. monitoring - but

is not adaptive to the signal class of interest, and does not leverage

the compression properties of more general representations. When

communication capacity is at a premium, this is a serious bottleneck.

In this paper we first show that the robustness computation is signif-

icantly affected by how the continuous-time signal is reconstructed

from the received samples, which can mean the difference between

a successful control and a crash. We show that monitoring general

spline-based reconstructions yields a smaller robustness error, and

that it can be done with the same time complexity as monitoring

the simpler PWL reconstructions. Thus robustness computation

can now be adapted to the signal class of interest. We further show

that the monitoring error is tightly upper-bounded by the L∞ signal

reconstruction error. We present a (non-linear) L∞-based scheme

which yields even lower monitoring error than the spline-based

schemes (which have the advantage of being faster to compute),

and illustrate all results on two case studies. As an application of

these results, we show how time-frequency specifications can be

efficiently monitored online.
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1 INTRODUCTION
Many Cyber-Physical Systems (CPS) require the exchange of in-

formation between components. As a first example, consider a

multi-drone fleet tasked with a global mission (Fig. 1). Every drone

periodically transmits its planned trajectory to its neighbors (in a

distributed scheme) or to a central controller [19], and the receiver

computes its next control actions based on how well the fleet’s
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Figure 1: Remotely monitoring the safety of autonomous
drones in an urban environment via a centralized air-traffic
monitor.

overall plan will meet the mission goals. As a second example, con-

sider medical devices, like Insertable Cardiac Monitors, that must

transmit the cardiac signals they record to a monitoring unit in a

hospital [16]. The monitoring unit computes how far or close the

current cardiac rhythm is from a ‘normal’ rhythm, and raises the

alarm if long-term trends indicate a deterioration of the patient’s

condition. In both examples, the receiver determines whether the

received signals satisfy or violate one or more specifications that

are generally unknown to the transmitter.

In this work, the specification is formally captured in a Signal

Temporal Logic (STL) formula, and the robustness of the STL for-

mula quantifies how well the received signal satisfies the formula,

or, conversely, how badly it violates it. It is therefore important to

analyze how the robustness computation is affected by the repre-
sentation scheme used for sampling the signal at the sender, and

reconstructing it at the receiver. For an intuitive example, consider

the signal shown in Fig. 2 with its various reconstructions. The

signal measures the mutual separation between two autonomous

quad-rotor drones, so a value of 0 indicates a collision. The STL

formula for this data specifies, among other things, that the mutual

separation should always be above a safety threshold, and below the

communication range of the two drones most of the time. Clearly,

if the robustness is computed on the black Piece-Wise Linear (PWL)

reconstruction, it will suggest successful control, since the PWL

signal satisfies the specification - but the purple cubic spline recon-

struction reveals a specification violation - indeed, it shows a crash

between the drones.

Of course, it is well-known that different bases have different

signal reconstruction errors - but the effect of such errors on ro-

bustness computation have not been studied before, the choice of
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Figure 2: Distance between two quad-rotors, and its sam-
pled/reconstructed versions.

appropriate bases has not been tackled, and is it not known whether

it is possible to monitor general representation schemes efficiently.

These questions are pervasive: they arise whenever a signal is com-

pressed and transmitted to be monitored at the receiver, be it for

control or verification. They are of a clear CPS nature, requiring

an analysis of physical signal processing’s effect on the robustness-

guided digital controller or monitor. Answering these questions

systematically is important, since a robustness value computed

from the wrong basis can mean the difference between a crash and

successful control, or between ‘Normal’ and ‘Fatal’ diagnoses. The

answers are not a priori obvious - namely, better reconstruction

does not necessarily mean a more accurate robustness value. In-

deed, representation schemes seek to re-construct the entire signal

(usually in the L2 sense), while we only care for one summary value

(the robustness). And of course, it is advantageous to use more com-

pressive bases than, say, PWL used in [5], since simply increasing

the number of samples is not an option.

Related work The example in Fig. 2 highlights the need for

accurate computation of robustness. In practice, every analog signal

is sampled to yield the sequence (x (ti )). This raises the question of

how to interpret an STL formula on the unavailable analog signal

x. In the literature, this has been addressed in one of two ways:

either an explicit discrete-time (a.k.a. pointwise) semantics for the

logic is used (as done in [4]), with some conditions to guarantee

that the sampled sequence satisfies the formula only if the analog

signal does [9]. These conditions are conservative, and impose

formula-dependent restrictions on the sampling procedure (e.g.,

Assumption 2 in [9]), which is not desirable since the receiver might

be monitoring multiple formulas, and the sender might not even

know the formulas being monitored. They also require knowledge

of certain quantities that might not be available, like the Lipschitz

constants of the signals.

The second way this is approached in the literature is by using

Piece-Wise Linear (PWL) interpolation to reconstruct an approxi-

mation x̃ of x from the sample sequence, as done in the monitoring

tool Breach [5].
1
PWL interpolation allows the development of an

efficient monitoring algorithm. However, it might not be the best

reconstruction scheme for the class of signals encountered in the

application.

1
Breach also supports piece-wise constant interpolation, which is a special case of

PWL.

In [3], the related question of giving bounds on the robustness

in online monitoring, given a priori bounds on signal values, is

tackled. The notion of robustness is generalized in [12] to weaker

algebraic structures and in [2] to include averaging over time, and

the alternative notion in [15], developed for efficient control, does

not capture the boolean truth value of the specification. The work

in [21] accounts for missing samples via a statistical hypothesis

test.

Contributions. We demonstrate empirically, on two case stud-

ies from drone fleets and cardiac monitoring, that the robustness

computation is significantly affected by how the continuous-time

signal is reconstructed from the received coefficients, which can

change the decisions taken at the receiver in a meaningful manner

(Section 3). We show that the monitoring error is tightly upper-

bounded by the L∞ signal reconstruction error, and present a (non-

linear-filtering) L∞-based representation scheme that yields the

smallest monitoring error with today’s most efficient monitor [5]

for a given transmission size (Section 4). We then extend this moni-

tor to handle spline-based representations beyond piece-wise linear.

We show that monitoring these representations yields a smaller

robustness error, while remaining in the same time complexity class

as monitoring the PWL reconstructions (Section 5). As an applica-

tion of these results, we show how time-frequency specifications

can be efficiently monitored online (Section 6).

2 PRELIMINARIES: TEMPORAL LOGIC AND
SIGNAL REPRESENTATIONS

A signal x is a function from E ⊆ R to R. The signal’s domain E
is denoted domx. The restriction of x to interval I is written x↾I .
When E is countable we call x a discrete-time signal. Otherwise, if E
is compact, we say x is a continuous-time, or analog, signal. Unless
otherwise specified, all signals we use are analog. The first and

second time derivatives are denoted x′ and x′′ resp. The essential
supremum and infinum are denoted ess sup and ess inf, resp. The

sup norm of x is ∥x∥∞ := ess suptx (t ), and its p norm is ∥x∥p =
(
∫
R
|x (t ) |p )1/p , 1 ≤ p < ∞. Lp (E) is the space of real functions

with domain E with finite p-norm, and L∞ (E) is the space of real
functions on E with finite sup norm. When E = R we write Lp
and L∞. The inner product over a real function space is ⟨f ,д⟩ :=∫
f (t )д(t )dt .

2.1 Signal Temporal Logic and robustness
In verification, one wishes to determine whether the signal satisfies

some specification like “Whenever x > 2, it stays there for at least 3

seconds”. In control, one wishes to control the system producing the

signal so that the latter satisfies the specification. Specification are

formally expressed in Signal Temporal Logic (STL) [18], a language
for expressing reactive temporal requirements, closely related to

Metric Temporal Logic [13].

Let M = {µ1, . . . , µK } be a set of Lipschitz predicate functions,
µk : R → R, and let L be the largest Lipschitz constant of the set.

Let I ⊂ R denote an interval, ⊤ the Boolean True, µ a predicate, ¬
and ∧ the Boolean negation and AND operators, respectively. An

STL formula ϕ is built recursively from the predicates as follows:

ϕ := ⊤|µ (x ) ≥ 0|¬ϕ |ϕ1 ∧ ϕ2 |ϕ1UIϕ2
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Informally, ϕ1UIϕ2 means that ϕ2 must hold at some point in I ,
and until then, ϕ1 must hold without interruption. The operators

Always (□) and Eventually (^) can be derived from Until. Formally,

Definition 2.1 (STL semantics). Let E ⊂ R. The boolean truth
value of ϕ w.r.t. signal x : E → R at time t ∈ E is defined recursively.

(x, t ) |= ⊤ ⇔ ⊤

∀pk ∈ AP , (x, t ) |= pk ⇔ µk (xt ) ≥ 0

(x, t ) |= ¬ϕ ⇔ ¬(x, t ) |= ϕ
(x, t ) |= ϕ1 ∧ ϕ2 ⇔ (x, t ) |= ϕ1 and (x, t ) |= ϕ2

∀I ⊂ R, (x, t ) |= ϕ1UIϕ2 ⇔ ∃t ′ ∈ (t + I ) ∩ E.(x, t ′) |= ϕ2
and ∀t ′′ ∈ (t , t ′) ∩ E, (x, t ′′) |= ϕ1

We say x satisfies ϕ if (x, 0) |= ϕ. Otherwise we say x violates ϕ.
Designing a controller s.t. the closed-loop system satisfies the

STL specification is not always enough. In a dynamic environment,

where the system must react to unforeseen events, it is useful to

have a margin of maneuverability by maximizing the degree of
satisfaction of the specification. When unforeseen events occur,

the system can react to them without violating the formula. This

degree of satisfaction can be formally defined and computed using

the robust semantics of temporal logic. In what follows, a ⊓ b is the

minimum of a and b, and a ⊔ b is their maximum.

Definition 2.2 (Robustness[6, 8]). The robustness of STL for-
mula ϕ relative to x : E → R at time t ∈ E is

ρ⊤ (x, t ) = +∞

ρµ (x, t ) = µ (x (t )) ∀µ ∈ M,

ρ¬ϕ (x, t ) = −ρϕ (x, t )

ρϕ1∧ϕ2
(x, t ) = ρϕ1

(x, t ) ⊓ ρϕ2
(x, t )

ρϕ1UIϕ2
(x, t ) = ess supt ′∈(t+I )∩E

(
ρϕ2

(x, t ′)
l

ess inft ′′∈[t,t ′)∩Eρϕ1
(x, t ′′)

)
When t = 0, we write ρϕ (x) instead of ρϕ (x, 0).

The robustness
2
is a real-valued function of x with the following

important properties.

Theorem 2.1. [6, 8] For any x : E → R and STL formula ϕ,
if ρϕ (x, t ) < 0 then x violates ϕ at time t , and if ρϕ (x, t ) > 0 then x
satisfies ϕ at t . The case ρϕ (x, t ) = 0 is inconclusive.

An algorithm that computes the robustness ρϕ (x, t ) is called a

monitor.

2.2 Signal decomposition and reconstruction
Notation. Let δ be the Dirac delta, id : R → R be the identity

function x 7→ x , and βn be the order-n polynomial spline, defined

recursively by:

β0 (t ) =



1 , |t | < 1/2

1/2 , t = 1/2

0 , |t | > 1/2
, βn = βn−1 ∗ β0,n ≥ 1 (1)

2
Our definition has a slight technical difference with the usual definitions in that we

use the essential supremum and infimum for the Until operator, instead of supremum

and infimum. This is to match the definition of sup norm. For many signal classes of

interest, like continuous signals, the two notions coincide.
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Figure 3: Filtering-based decomposition and reconstruction
of signals [25]

Here, f ∗д : y 7→
∫ ∞
−∞

f (t )д(y−t )dt is the convolution of functions

f and д. Note that f ∗ δ = f .

Filtering-based representations. When sending a signal x, the
transmitter must first convert the signal into a sequence of num-

bers, a process which we will refer to as decomposition. The receiver
reconstructs an approximation x̃ of x from the sequence. Linear

filtering is widely used for both decomposition and reconstruc-

tion [25], as shown in Fig. 3. The signal is first convolved with

the decomposition (or analysis, or acquisition) filter φ1 (−t ), is sam-

pled, and the resulting coefficients (c1 (k )) are transmitted. At the

receiver, a digital filter Q is applied to c1 to yield (c2 (k )), then the

approximation is constructed as

x̃(t ) =
∑
k ∈Z

c2 (k )φ2 (t − k ) (2)

(Note we assume sampling at the integers for simplicity, non-integer

sampling times are handled by scaling the filters). Depending on

the choice of filters φ1,φ2 andQ , different reconstructions with dif-

ferent properties are obtained. This paper considers three schemes.

We present them in their special form that we use for robustness

computation, their general form can be found in the cited refer-

ences.

Default Scheme. This scheme uses (φ1,Q,φ2) = (δ , id, β1). I.e.
it simply samples the signal, and does a continuous Piece-Wise

Linear (PWL) interpolation between the samples, a.k.a. knots, at
the receiver.

L2-optimal scheme [25]. In this case, (φ1,Q, βn ) = (
o
βn , id, βn ),

where

o
φ is defined via its Fourier transform

ô
φ :=

φ̂∑
k ∈Z |φ̂ (ω + 2kπ ) |

2

This scheme yields the reconstruction with minimum L2 error.
Consistent Scheme [26]. In this case, (φ1,Q,φ2) = (δ ,Qint, βn ),

with the filter’s z-transform given by

Qint (z) =
1∑

k ∈Z βn (k )z
−k

This scheme has the property that x(k ) = x̃(k ) for all k ∈ Z. It
is used when one does not control the sender’s choice of decom-

position filter φ1, and so the L2 reconstruction error cannot be

minimized. (E.g., here, δ has to be chosen). In this case, it is reason-

able to require that at least the original and reconstructed signals

yield the same measurements, and the digital filter Q ensures this.

We refer to these collectively as filtering-based representation
schemes. In this paper we deal explicitly with scalar-valued signals

only; the extension to higher dimensions follows straightforwardly

from using separable decomposition and reconstruction bases.
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2.3 Best uniform approximation
Because the Breach monitor uses PWL reconstruction from the

knots (ti , x(ti ))i , we propose the following scheme: for a maximum

number nx of transmitted knots,

1) The transmitter computes the PWL approximation x̃with smallest

uniform error ∥x − x̃∥∞ over nx knots. Call this the Best Uniform
approximation. This yields a sequence (ti ,x (ti )) of knots, which
are transmitted.

2) The receiver reconstructs x̃ perfectly from the received knots by

connecting them with lines, and evaluates ρϕ (x̃, ·) without error.
Thus the only error incurred is that of approximating x by x̃

at the transmitter. The choice of uniform norm ∥ · ∥∞ to measure

the error is theoretically justified in Section 4. For now, our goal is

to introduce this scheme and evaluate its performance against the

others, which we do in the next section.

3 THE EFFECT OF DIFFERENT
REPRESENTATIONS ON ROBUSTNESS

We compare the accuracy of robustness computation for the dif-

ferent signal representation schemes from Section 2.2 in two case

studies, one on autonomous drones and one on cardiac monitors.

In each case study, the input to Breach is the reconstructed x̃.
For a fair comparison, in all representation schemes, the number of

transmitted coefficients c1 (k ) is the same, and equal to 1/20th the

length of the original signal. The ground truth for the comparison

is the robustness computed on the original high-rate signal x.

3.1 The two drone case study
3.1.1 Experimental setup. We collected data from simulations of

two autonomous drones performing a joint reach-avoid mission

(similar to [20]), while a centralized workstation is monitoring their

mutual separation. The drones have to communicate with each

other because they are performing a distributed optimization as

part of their path planning algorithm. Therefore, they are allowed

to go out of communication range (2m) for a limited duration at a

time only (3 seconds). Moreover, they must always be at least 0.25m
away from each other for safety. The specification is encoded in

the STL formula:

ϕ
safe+comm

= □((x ≥ 2⇒ ^
[0,3]x ≤ 2) ∧ x ≥ 0.25) (3)

We also monitor the following simpler spec starting at t = 8s -
i.e., this spec is relevant only after the initial take-off. It asks for a

faster recovery to within communication range:

ϕ
fast recovery

= (x ≥ 2⇒ ^
[0,1]x ≤ 2) (4)

Fifty traces were collected, with the drones starting from 50

randomly chosen initial positions. The original sampling rate is

20Hz, and the robustness of this signal is taken to be ground truth.

For the signal decomposition in the schemes of Sec. 2.2, the signal is

sampled, or the coefficients are computed, at 1Hz. For the Consistent

and L2-optimal schemes, we vary the spline order n over the odd

integers between 1 and 13.

3.1.2 Results. For the specification ϕ
safe+comm

of Eq. (3), Fig. 4

shows the mean and standard deviations of the absolute value of

the robustness computation error, as well as the 90
th

percentile

of the absolute value of the robustness error. Across the different
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Figure 4: Absolute error in computing the robustness of ϕ safe+comm at time

0 (mean, standard deviation on top, 90th -percentiles on bottom) for the dif-

ferent schemes with increasing order of splines. Default and Best Unif. per-

formance is independent of spline order. Colors in digital copy.

spline orders used in the Consistent and L2-optimal schemes, the

error is smaller than the error using the Default Scheme. The perfor-

mance of the two schemes that rely on the βn splines shows a slight

improvement as the spline order n increases, until n = 13, where

the error in the robustness value computed increases. Also shown

in Fig. 4 are the mean, standard deviation, and 90
th

percentile of

the absolute error when using the Best Uniform scheme with the

same number of knots as the filtering-based schemes. These errors

are much smaller than those for the other schemes.

Fig. 5 shows the mean, standard deviations and 90
th

percentile

of the absolute error in robustness computation for ϕ
fast recovery

,

Eq. (4). Similar to the results for the more complex specification, the

monitoring is more accurate when usingConsistent and L2-optimal

than using Default Scheme. Of the three filtering-based schemes,

L2-optimal performs the best, and its performance improves with

increasing order of the βn spline. Finally, here too, Best Uniform

performs best of all schemes.

3.1.3 Conclusions. These results clearly show that it is beneficial

to use higher-order spline filters for signal representation and trans-

mission, rather than simply relying on PWL interpolation between

uniformly sampled signal values (the Default Scheme). We must

emphasize that the choice of representation must be tied to the

signal class one expects in the application, and there is no one-size-

fits-all solution. Our objective in the next section is to show that it is
possible to efficiently monitor these more general signal reconstruc-
tions at the receiver - otherwise, there wouldn’t be a substitute to PWL
interpolation.

The results also show that using the Best Uniform scheme out-

performs all other schemes we studied, and so should be used if that

is an option. (As we explain in Section 5, there might be compelling

reasons forcing the use of a filtering-based scheme).
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Figure 6: Cardiac electrogram during normal rhythm

3.2 The cardiac monitoring case study
3.2.1 Experimental Setup. Electrogram signals (Fig. 6) are used

to diagnose heart conditions by physicians, and by implantable

cardiac devices in a real-time manner [24]. While the analog signal

may be acquired at a high rate by an Insertable Cardiac Monitor

(ICM) - around 256Hz - it is compressed for periodic transmission.

Weareable devices, which acquire a surface EGM-like signal, offer

the potential to transmit these signals in real-time for remote colla-

tion and analysis, but because their measurements are much noisier,

they are sampled at a low rate. For this case study, we envision such

cases, where EGM signals, originally acquired at 1000Hz, are sam-

pled and transmitted at 50Hz (or 1/20th of the original data rate) to

be monitored for a potentially fatal arrhythmia. Such a condition is

captured in the following STL specification (x is measured in mV):

ϕ EGM = ((^
[0,5]x > 1000) ∧□

[0,20] (x > 1000

⇒ ^
[1,5]x > 1000)) ⇒ ^

[20,100] ( |x | < 250)
(5)

This says that if the voltage exceeds 1V 5 times in the first 20 sec-

onds, then it will settle below 0.25V in the 80 seconds following that.
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Figure 7: A zoomed-in view of 10 seconds of an EGM signal along with its

reconstructions with the Default, Consistent β3, and Best Uniform schemes

with the same number of coefficients/samples. Colors in digital copy.
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Figure 8: Absolute error in computing the robustness of ϕ EGM (mean, stan-

dard deviation on top, 90th -percentiles on bottom) for the different schemes

with increasing order of splines. Default and Best Unif. performance is inde-

pendent of spline order. Colors in digital copy.

A violation suggests a sustained train of ectopic beats, indicative of

disordered activity. We also monitor a simpler specification, which

checks that there is activity in the EGM signal.

ϕ
no flatline

= ^(x ≥ 5) (6)

3.2.2 Results. We monitor the two formulas with the four rep-

resentation schemes of Section 2.2, and at several spline orders

for Consistent and L2-optimal schemes. We measure the mean,

standard deviation and 90
th

percentile of the absolute error in ro-

bustness computation for each scheme. The ground truth is again

provided by computing robustness on the high-rate original signal.

To help interpret the results, we first provide Fig. 7, which shows a

snapshot of an EGM signal and its approximations. At the signal

peak around t = 1464s , the Default Scheme poorly approximates

the peak, the Consistent Scheme does a better job, while the Best

Uniform approximation (with the same number of samples as the

other schemes) does best by using more samples to represent this

part of the signal.
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is independent of spline order. Colors in digital copy.

Fig. 8 gives the results for ϕ EGM. First we note that the errors

for the filtering-based schemes are significant. Also, unlike the

Two Drone case, the L2-optimal scheme performs similar to (or

worse than) the Default Scheme. The Consistent scheme performs

better than the other two filter-based schemes. Finally, Best Uniform

produces the smallest robustness errors. This is because this formula

is dependent on peak detection, and L2 norm does not guarantee

good approximation of narrow peaks.

This trend is more noticeable with the simpler ϕ
no flatline

, as

shown in Fig. 9. The robustness of this specification is only de-

pendent on the maximum value of the EGM signal. Working with

the periodically sampled signal, as in the Default and Consistent

schemes, results in similar 90
th

percentile errors and means. The

consistent scheme gives smaller standard deviation of the robust-

ness computation error. Using Best Uniform (with the same number

of samples) results in the best performance in this case as well (Fig.

9). This is expected, as it samples more around the peaks to give a

tighter L∞ approximation to the original signal.

3.3 Conclusions for the filtering-based schemes
The results for the Medical Monitoring case study do not follow the

same trends as the Two Drone case study. This boils down to the

different signal classes: smooth without large derivatives in Two

Drones, and non-smooth with large derivatives and accelerations

in Medical Monitoring. This reinforces the need to choose the right
representation scheme, and therefore the need for an efficient monitor
that can handle a wider family of reconstructed signals, beyond PWL.
This is the subject of the next section.

3.4 Best Uniform approximation
Given the performance of Best Uniform in the previous section,

here we study that performance as we vary the maximum allowed

L∞ reconstruction error, and compute the uniform PWL approxima-

tion x̃ respecting this error bound with smallest number of knots,
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Figure 10: Error bars (mean ± std deviation) of robustness
computation on theMedical Monitoring case study, vs. max-
imum allowed reconstruction errors. Colors in digital copy.
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Figure 11: Error bars (mean ± std deviation) of robustness
computation on the Two Drone case study, vs. maximum al-
lowed reconstruction errors. Color in digital copy.

using a modified version of Dunham’s dynamic program [7] (see

Appendix E). We use formula ϕEGM . As a comparison basis, for

each signal, we also evaluate the robustness of the PWL approxima-

tion whose knots are obtained by uniform sampling - call this xu .
The “true” robustness for each signal was computed by sampling

the signal at 1000Hz and feeding these samples to Breach. We repeat

this experiment for various values of ∥x − x̃∥∞, and compare the

errors |ρϕ (x) − ρϕ (x̃) | and |ρϕ (x) − ρϕ (xu ) |.
Fig. 10 shows the error bars for robustness against the allowed

reconstruction error for the EGM data set. As expected, using Best

Uniform yields a lower average robustness error over the data set.

Note also that Best Uniform yields a smaller variance, and that

it is less sensitive to the allowed reconstruction error. The same

conclusions hold over the Two Drone data set, shown in Fig. 11.

4 MONITORING THE BEST UNIFORM
APPROXIMATION

In this section we explain the performance of Best Uniform, ob-

served in the previous sections. Consider the signal xn in Fig. 12,

which approximates 0, the constant zero signal on [0,1], and the

formula □(x ≤ 1). The L2 error ∥0 − xn ∥2 = 1/
√
n → 0, but the

robustness error is |ρ (xn ) − ρ (0) | = |(1 −
√
2) − 1| =

√
2 for all n.

Thus controlling the L2 signal reconstruction error does not always

yield a control of the robustness computation error. The next result,

a generalization of [1, Thm. 4.1], shows that we should control for
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Figure 12: Small L2 reconstruction error does not imply
small robustness computation error.

the sup norm of the reconstruction error. Recall L is the largest

Lipschitz constant of all predicates µ, and so is known.

Theorem 4.1. Given two signals x and x̃ and their difference
e := x − x̃, it holds that

∀t ,∀ϕ ∈ STL, |ρϕ (x, t ) − ρϕ (x̃, t ) | ≤ L∥e∥∞

The bound is tight - i.e., for every signal there exists a formula where
it holds with equality.

Proof. See Appendix. □

Because the bound is tight, and the transmitter does not know

what formula is monitored at the receiver, the best one can do is to

minimize ∥x − x̃∥∞ by using Best Uniform.

The number of segments in the Best Uniform approximation of x
over the interval [a,b] behaves asymptotically as c/

√
∥e∥∞, where

c = 0.25
∫ b
a

√
x′′(t )dt [11]. This estimate helps choose the trade-off

between robustness error and number of transmitted coefficients.

This scheme naturally works for any reconstruction used at the re-

ceiver, e.g., piece-wise polynomial, as long as there exists an efficient
monitoring procedure for the resulting signal class (and a procedure

for computing the approximation at the transmitter).

5 MONITORING FILTERING-BASED
APPROXIMATIONS

The results of the previous section demonstrate that filtering-based

approximation schemes, based on the architecture of Fig. 3, out-

perform simple PWL (the Default Scheme), but are consistently

out-performed by a uniform approximation. Nonetheless, it is im-

portant to study filtering-based schemes, because

• such schemes are pervasive in communication systems, and

it might not be an option to modify existing infrastructure

just for the purposes of robustness computation;

• the received signal can have multiple uses at the receiver,

some of which require preserving the shape of the original
signal, and

• these uses might require controlling the L2 error specifically.

For example, in the multi-drone use case, a drone receives the

planned trajectories of neighboring drones. In addition to com-

puting their robustnesses (when coupled with its own plan), the

receiving drone also does motion planning in continuous space.

For this planning, it is important to preserve the shape of the oth-

ers’ trajectories. A PWL approximation of those trajectories is too

inaccurate for this purpose. If the drone also uses robust Model

Predictive Controller (MPC) for tracking, the robust MPC formu-

lation can handle efficiently L2-bounded measurement errors, so

minimizing the L2 reconstruction error matters.

This section explains how to monitor (i.e., compute the robust-

ness of) signal reconstructions generated through filtering-based ap-

proximations at the same complexity as monitoring Default Scheme

approximations, after a cheap pre-processing step. We require φ2 to
be a polynomial spline (φ2 = βn ,n > 1), and place no restrictions

on φ1 and Q . Thus, this includes the Default, Consistent and L2-
optimal schemes as special cases. Then it is shown how to bound

the L∞ reconstruction error by the L2 error for a wide class of

signals, thus giving a partial explanation for why filtering-based

schemes perform better than the Default Scheme.

5.1 Monitoring spline representations
First, an overview of the relevant elements of Breach’s monitor is

needed. Let f : (a,b) → R be the signal to monitor. To simplify

the exposition, as in [5], it is assumed that the predicates are all

of the form f (t ) ≥ ap . The monitor receives a finite sequence of

nf knots (ti , f (ti ), f ′(ti ))
nf
i=1, and returns ρϕ ( ˜f , ·) : (a,b) → R, the

robustness signal of the reconstruction ˜f relative to ϕ. In [5], it is

assumed that
˜f is a PWL interpolation of the received sequence,

which corresponds to using the Default Scheme.

Example 5.1. We first give an example of the monitor’s recursive

operation: if ϕ = ^(p ∧ q), then the monitor first computes the

robustness signals y1 = ˜f − ap and y2 = ˜f − aq , which clearly are

PWL. This is the first level of computation. It then computes the sig-

nal y3 = y1⊓y2, also PWL (but possibly with more knots generated

at the intersections of y1 and y2). This is the second level. At the

third and final level, it evaluates ρϕ ( ˜f , t ) = y4 (t ) = sups≥ty3 (s ),
which is also PWL. It is shown in [5] that every intermediate robust-

ness signal yk thus computed (at every level) is itself PWL. From

one level of computation to the next, the algorithm carries forward

the symbolic representation of the PWL approximation, namely its

knots (ti ,y (ti ),y
′(ti ))

ny
i=1.

We now describe formally how the robust semantics of conjunc-

tion (∧) and untimed Eventually (^) operators are evaluated, which
will be sufficient to explain how the computations can be efficiently

generalized to polynomial spline reconstructions. See [5] for other

operators. The computation is recursive.

Conjunction ϕ ∧ψ . Let y = ρϕ ( f , ·) ≡ (ti ,y (ti ),y
′(ti ))

ny
i=1. and

w = ρψ ( f , ·) ≡ (sj ,w (sj ),w
′(sj ))

nw
j=1. Both y and w are PWL as

shown in [5]. We want to compute z = y ⊓w . First, compute the

sequence of times (ri )
nz
i=1 ∈ (a,b) which contains (ti ), (sj ), and the

times at which y andw intersect - see Fig. 13. Note that 1) intersec-

tions can be efficiently computed for PWL signals, and 2) the new

sequence (ri ) has length bounded as nz ≤ 4max{ny ,nw }. Finally, z
is given by (z (ri ), z

′(ri )) = min{(y (ri ),y
′(ri )), (w (ri ),w

′(ri ))} (in
lexicographical order).

Untimed eventually ^ϕ. If y is the robustness signal of ϕ and

z that of ^ϕ, then for all s < t , z (s ) = z (t ) ⊔ sup
[s,t ) y (s ). Eval-

uating this last expression proceeds from the end of the signal

backwards, initialized at z (tny ) = −∞, iterating over the knots of

y ≡ (ti ,y (ti ),y
′(ti ))

ny
i=1. Given the already-computed value z (ti+1),

there are 4 cases
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Figure 13: Monitoring a conjunction with PWL reconstruc-
tion. {ri } is the sequence of knot times for ρAND = ρ1 ⊓ ρ2.

a) if y (ti ) ≤ y (ti+1) then ∀s ∈ [ti , ti+1), z (s ) = z (ti+1) ⊔ y (ti+1),
b) if y (ti ) > y (ti+1) ≥ z (ti+1), then ∀s ∈ [ti , ti+1), z (s ) = y (s )
c) if z (ti+1) ≥ y (ti ) > y (ti+1), then ∀s ∈ [ti , ti+1), z (s ) = z (ti+1)
d) y (ti ) > z (ti+1) > y (ti+1), there exists t

∗ ∈ [ti , ti+1) s.t. z (s ) =
y (s ) on [ti , t

∗) and z (s ) = z (ti+1) on [t∗, ti+1).
The time complexity of any operator (i.e., at any level of the

computation) is linear in the number of knots at that level, and the

time complexity of the overall algorithm is given by the following.

Proposition 5.2. [5] The time complexity of the Breach robust-
ness monitor is O ( |ϕ | · dh (ϕ )nf ) where d ≤ 4, h(ϕ) is the height of
the formula’s parse tree and |ϕ | is the number of nodes in the tree.

Generalization to splines. The key observation, which the

reader can make by studying the above two operators, is that piece-

wise linearity of the (reconstructed) signal is not essential for the

monitor in [5] to be efficient. We have:

Proposition 5.3. Let F be a class of signals supported on (a,b),
and κ : f → (ti , f (ti ), f

′(ti ))
nf be a map which returns a knot

sequence for every f ∈ F . If F and κ satisfy the following properties:
(1) every f ∈ F admits a symbolic representation on every inter-

val [ti , ti+1] from its knot sequence κ ( f )
(2) every f ∈ F is monotone on every interval [ti , ti+1] of its knot

sequence
(3) the number of intersections of any two signals y andw from
F is at most a constant multiple of ny + nw .

(4) these intersection points are computed in O (1) time in nw +
nz , |ϕ |,d and h(ϕ).

Then the Breach monitor will compute the robustness of any signal in
F with the same time complexity given in Prop. 5.2.

In particular, the time complexity at every level will still be linear

in the number of knots at that level.

Therefore, we now exhibit such F and κ. Let F be the class of

polynomial splines of order n, f =
∑
k c2 (k )βn (x − k ), and let κ

return the inflection points of f : points where it changes convexity
and/or monotonicity, e.g. from convex decreasing to convex increas-

ing, or from convex decreasing to concave decreasing, etc. These are

the points where f ′(t ) f ′′(t ) = 0. This choice satisfies properties

(1)-(4). Indeed, it satisfies (1) as splines admit a symbolic representa-

tion, property (2) by construction of (ti ), and property (3) because

on every refined interval [ti , ti+1] ∩ [sj , sj+1], two convex/concave

monotone signals intersect at most twice. If they do intersect twice,

at least one intersection is at an endpoint of the interval. It also

satisfies property (4): finding the intersection points requires find-

ing the zeros of the difference spline y −w . For splines up to order

n = 4, this can be pre-solved analytically in terms of the spline

coefficients and stored for online evaluation; for higher orders, one

can use a zero-finding scheme that converges quadratically from

any starting point [17]. Either way, this is O (1).
Complexity. The complexity result Prop. 5.2 is in terms of the

number of knots of the reconstruction, nx̃, but we seek to compare

monitoring runtimes for the same numberTx of transmitted values.

For the Default Scheme, Tx equals nx̃. For more general filtering-

based schemes, that is not necessarily the case, since we transmit

Tx spline coefficients, and the knots are inflection points of the

reconstruction x̃. We now prove the following.

Theorem 5.4. The time complexity of the Breach monitor for
polynomial spline reconstructions is O ( |ϕ | · dh (ϕ )Tx).

Proof. We show that for spline reconstructions, nx̃ is at most

linear in Tx. Consider the reconstruction with Tx transmitted co-

efficients: x̃ =
∑
k ∈K : |K |=Tx c2 (k )βn (x − k ) (a transmission is nec-

essarily of finite duration). The inflection points of x are solutions

of x̃′(t )x̃′′(t ) = 0, so there are at most as many inflection points

as there are zeros of either x′ or x′′: nx̃ ≤ Z (x′) + Z (x′′). Clearly,
x̃ belongs to a spline space of dimension at most Tx, and taking

the derivative decreases the dimension by 1, so by a well-known

property of splines [22]

Z (x′) + Z (x′′) ≤ (Tx − 1) − 1 + (Tx − 2) − 1 = 2Tx − 5

Finally,

nx̃ ≤ 2Tx − 5

From this, and Props. 5.2 and 5.3, the result follows. □

In practice, there is an overhead due to computing the knots

of x̃, which requires finding the zeros of x̃′ and x̃′′. This is a pre-
processing step upon receipt of the spline coefficients, to which

applies the above discussion on zero-finding methods.

Implementation. We created a (non-optimized) implementa-

tion of the modified robustness monitor in Matlab, and illustrate

its operation in Fig. 14. The monitored signals, s12 and s23, capture
the pair-wise mutual separation between 3 drones, (we don’t con-

sider s13). The formula is ϕ = ^(s12 > δ ∧ s23 > δ ), where δ is

in meters. Fig. 14 shows the robustness signals for the predicates,

ρ1 := ρs12>δ (x, ·) and ρ2 := ρs23>δ (x, ·), the intermediary signal

ρAND from evaluating the AND, and the final robustness signal

ρEv = ρϕ (x, ·). It is clear that the final signal is in the same signal

class as the monitored signals, which means it is significantly more

accurate than a signal whose structure is imposed to be PWL or

piece-wise constant.
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Figure 14: The modified monitor returns robustness signals
that are in the same class as the monitored signals. Shown
are the steps of computing ρϕ (x, ·) formutual separation for-
mula ϕ = ^(s12 > δ ∧ s23 > δ ). Final robustness signal is
in purple (colors in digital copy). The knot points are also
marked on each signal.

5.2 Bounding the L∞ error in filtering-based
schemes

When forced to use an existing filtering-based representation scheme,

the results of the previous section showed that the user can at least

use the reconstruction basis that is most appropriate for the signal

class that appears in the application, without worrying about the

robustness monitoring overhead. Filtering representations are eval-

uated based on the L2 norm of the reconstruction error. As we saw

in Thm. 4.1, it is the sup reconstruction error that matters when

computing robustness. Yet we saw empirical evidence in Section 3

that some filtering-based schemes nonetheless perform well. By

way of explaining this, in this section, we give conditions under

which the L2 norm of the reconstruction error upper-bounds its

L∞ norm over bounded intervals. The constants that appear in

the bound are signal-dependent; it is well-known that, in general,

no universal constants (that work for all signals) can exist (e.g.,

consider the signal family en (x ) =
√
2n(−nx + 1) over [0, 1/n] and

en (x ) = 0 otherwise.).

Theorem 5.5. 1. Let x ∈ L∞, (a,b) be a bounded interval with
a ≥ 0, and set e (t ) := [x(t ) − x̃(t )]↾(a,b ) . Then there exists a t∗ in
(a,b) s.t. ∥e∥∞ = lim supt→t ∗ |e (t ) |.
2. If e ∈ L∞ (a,b) and is continuous at t∗ then there exists a constant
C , dependent on x, s.t. ∥e∥∞ ≤ C ∥e∥2.

Proof. See Appendix. □

The constantC appearing in the bound is not known a priori, and

the empirical evaluation of the closeness between the two norms

very much depends on the data set one uses. Thus this theorem

provides only a partial explanation, but is nonetheless a start.

6 APPLICATION: ONLINE MONITORING OF
TIME-FREQUENCY SPECIFICATIONS

The ability to monitor reconstructions with more general bases

gives a more accurate robustness computation for the same num-

ber of transmitted values, as shown in previous sections. We now

0 200 400 600 800 1000 1200 1400
-1000

0

1000

2000

E
G

M
 (

m
V

)

0 200 400 600 800 1000 1200 1400
Time (s)

0

500

1000

E
S

Figure 15: EGM during ventricular tachycardia (top) and its
wavelet domain energy contained in a range [s1, s2] (bottom)

illustrate how to leverage other properties of more general bases,

specifically, the localization of wavelet bases. The application is mo-

tivated by the following example, which uses the wavelet transform.

See Appendix A for a review of the wavelet transform.

Example 6.1. Consider the ventricular EGM of Fig. 15. In ana-

lyzing an EGM, its instantaneous amplitude in the time domain,

|x(t ) |, and its instantaneous rate, are key features to determine the

nature of the rhythm.
3
A simplified prototypical specification that

one monitors for EGMs takes the form: “If instantaneous rate is

above a threshold at some time t , then the amplitude of the signal is

also above a threshold around that time”. Violation of this specifica-

tion might indicate ventricular fibrillation (a disorganized and fast

rhythm with low amplitude), which causes the person to collapse

within seconds [24]. The instantaneous rate is well-captured in the

wavelet domain, because wavelets allow a precise measurement of

the frequency content of the signal around specific points in time

via the magnitude of the signal’s wavelet transformX (s, t ) [10] (see

Appendix). Namely, we can examine ES (t ) = (
∫
S |X (s, t ) |2ds )1/2:

this is the energy of the signal, measured in the wavelet domain,

contained in the (scale) interval S ⊂ Rwhere frequencies of interest

(typical of fibrillation) occur
4
. Fig. 15 (bottom) shows E.

Thus we might formalize the above specification as

ϕV F := □( |ES | > b =⇒ ^
[0,τ ] |x | > a)

The predicates in formula ϕ carry over both the time and wavelet
domains. Formally, we have a 2D signal (x(t ),ES (t )), and the predi-
cates µk are functions of this 2D state.

If we are restricted to the Default Scheme, then we transmit

samples (x (ti )).
5
The receiver must then computeX (s, t ) and ES (t )

to monitor. To compute X (s, t ) =
∫
x(u)ψs (u − t )du at the larger

scales s , we have to wait until most samples have been transmitted

to perform the integration. This delays the start of calculation and

decisions at the receiver.

Can we do online monitoring at the receiver - that is, start com-

puting robustness as soon as the first few values arrive - by using a

different representation scheme? We can. First we note two facts:

3
The instantaneous rate is the rate computed over short windows whose size is dictated

by the application, and is in general different from the instantaneous frequency.

4
See [23, Appendix A] for scale-to-frequency mapping

5
One could argue that we should transmit samples (x (ti ), ES (ti )). But that’s an even

larger number of values to transmit in the Default scheme.
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Figure 16: Robustness ρV F (x, 0) vs the number of transmit-
ted coefficients X (S, t ), for the signal in Fig. 15.

• a wavelet reconstruction filter φ2 fits into the general filtering-

based scheme (φ1,Q,φ2) of Section 2.2, so given an efficient way

of finding the inflection points of a wavelet reconstruction, we can

use the modified monitor of Section 5.1.

• As shown in Appendix B, all of Breach’s computations can be

evaluated forwards, processing the signal from time 0 to T .
Assume a finite-length signal x is to be transmitted, supported

over [0,T ], and that we want to compute ρϕ (x, 0). The proposed
scheme is as follows: At the transmitter, compute the wavelet trans-

form X for all relevant scales s ∈ S ⊂ R, and transmit these values

as they’re computed: X (·, 0),X (·,∆t ),X (·, 2∆t ) . . ., etc.6 At the re-
ceiver, the monitor can immediately start computing ES (t ), and
reconstructing x↾[0,τ ] via the inverse wavelet transform; indeed,

since wavelets are compactly supported, only X (s, t ′), t ′ − As ≤
t ≤ t +As , s ∈ S , is needed to compute x(t ), where [−As ,As ] is the
support of ψs . This is not possible with the Euclidian basis used in
the Default Scheme. A fortiori, the monitor can start computing the

robustness ρϕ (x, 0), without waiting for the rest of the transmission.
Finally, note that in general, a far smaller number of wavelet coeffi-

cients needs to be transmitted for a good reconstruction of x, than
the number of samples x(ti ).

Fig. 16 shows the results of this scheme with the Bump wavelet

used to analyze the signals in Fig. 15. With the first coefficients

being received, the monitor starts computing robustness of the

time-frequency specification ϕV F , and finally settles on a value.

7 CONCLUSIONS
We showed that when a signal is transmitted to be monitored at

the receiver, the decomposition and reconstruction scheme has a

significant effect on the accuracy of the computed robustness. We

studied the performance of various schemes in terms of monitoring

error experimentally on two data sets, then provided theoretical

explanations for the empirical observations. We also demonstrated

that we can compute the robustness formore general spline schemes

without any increase in the complexity of the monitor, thus opening

the way to a significantly more accurate monitoring of robustness

that is adapted to the signal class of the application. The natural next

step is to study how knowledge of the formula-to-monitor might

6
We ignore discretization questions relating to the wavelet transform. These are well-

studied in the signal processing literature and are outside the scope of this paper. We

could also use the discrete-time wavelet transform.

guide the choice of representation basis and varying resolution

along the signal.
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A WAVELETS PRIMER
Let {ψs }s>0 be a family of functions, called wavelets, which are

obtained by scaling and dilating a so-called mother wavelet ψ (t ):
ψs (t ) =

1√
|s |
ψ

(
t
s

)
. The Continuous Wavelet Transform (CWT) X of

signal x : R+ → R is the two-parameter function:

X (s, t ) =

+∞∫
−∞

x(τ )ψs (τ − t ) dτ (7)

An example choice ofψ is the nth derivative of a Gaussian, that is:

ψ (t ) = dn
dtnG (t ).

Parameter s in thewaveletψs is known as the scale of the analysis.
At small scales s < 1, the mother wavelet is compressed, so that

only values close to x(t ) influence the value of X (s, t ) (see Eq. (7)).
Thus, at smaller scales, the wavelet coefficient X (s, t ) captures local
variations of x around t , and these can be thought of as being the

higher-frequency variations, i.e., variations that occur over a small

amount of time. At larger scales s > 1, the mother wavelet is dilated,
so that X (s, t ) is affected by values of x far from t as well. Thus,
at larger scales, the wavelet coefficient captures low-frequency

variations of x, occurring over large periods of time. See [23, Table

I] for some concrete scale-to-frequency mappings.

Fig. 17 shows a Normal Sinus Rhythm EGM and its CWT magni-

tude |X (s, t ) |. Brighter colors indicate larger values of coefficient

magnitudes |X (s, t ) |. It is possible to see that early in the signal,

mid- to low-frequency content is present (bright colors mid- to top

of spectrogram), followed by higher-frequency variation (brighter

colors at smaller scales), and near the end of the signal, two fre-

quencies are present: mid-range frequencies (the bright colors near

the middle), and very fast, low amplitude oscillations (the light blue

near the bottom-right).

B COMPUTATION DIRECTION IN
ROBUSTNESS MONITORING

Breach [5] computes the robustness signal ρϕ (x, t ) by working

from time 0 onwards (left to right) for some operators, and from

timeT backwards (right to left) for the others, as shown in this table:

Forward Backward

¬ ^

∧ U

^I

In fact, all computations can be performed in either direction. In-

deed, ¬ and ∧ are not temporal and so can be run in either direction

- they just operate on the instantaneous value of the signal.

The timed Eventually operator, ^I , is evaluated by executing

Lemire’s running maximum algorithm on the sequence (x (ti ))
with window t + I . But the maximum of a sequence of m num-

bers (a1, . . . ,am ) is the same as the maximum of (am , . . . ,a1), and
an inspection of Lemire’s algorithm can be executed backwards, by

running the window from the end of the sequence to its beginning,

yielding the same result and with the same complexity.

The untimed Eventually ^ is evaluated on every two consecutive

points x (ti ),x (ti+1) by a case analysis. It is easy to see that this

too can be computed forwards (in which case we incrementally

compute the maximum over values from 0 to current time), again

because the maximum of a sequence equals the maximum of the

reversed sequence. (However note that we pay the price in memory

as we must store the running maxima potentially for every ti - if
we only care about robustness at a specific point in time, then we

only need to store one value).

Finally, the untimed Until operator is evaluated using a combina-

tion of ∧,∨ and untimed ^, which we have shown can be evaluated

in either direction.

C PROOF OF THM. 4.1
The proof is standard and proceeds by structural induction on the

formula. The base cases ϕ = ⊤ and µ ≥ 0 are immediate. The case

ϕ ∧ Ψ is also standard and proceeds as follows: let δ = ∥x − x̃∥∞.
Let a = ρϕ (x, t ), b = ρΨ (x, t ), ã = ρϕ (x̃, t ), and ˜b = ρΨ (x̃, t ). Then
|ρϕ∧Ψ (x, t ) − ρϕ∧Ψ (x̃, t ) | = |a⊓b − ã⊓ ˜b |. By induction hypothesis,

|a − ã | ≤ Lδ and |b − ˜b | ≤ Lδ . Thus a ⊓ b ≤ (ã ⊓ ˜b) + Lδ and

a ⊓ b ≥ (ã ⊓ ˜b) − Lδ , and the conclusion follows. The Until case

follows by applying the And and Or cases (the latter being proven

similarly to AND).

D PROOF OF THM. 5.5
A set of zero Lebesgue measure is a null set. In what follows ‘almost

everywhere’, meaning everywhere except possibly on a null set, is

abbreviated as a.e.

1. By definition

ess supt ∈(a,b ) |e (t ) | = inf {M | |e (t ) | ≤ M a.e. in (a,b)}

Take an increasing sequence Mi ↗ M . For every i there exists a
non-null set Ωi ⊂ (a,b) s.t. |e (t ) | > Mi a.e.; since |e (t ) | ≤ M a.e.

on Ωi , then

Mi < e (t ) ≤ M a.e. on Ωi (8)

For every i , let Ωi be the largest such set measure-wise. Note that

Ωi is a union of intervals, being non-null in R. Since M1 < M2,

Ω2 ⊂ Ω1, and in general, Ωi+1 ⊂ Ωi . We can also take every Ωi
to be closed, since we can add a countable number of endpoints

to any non-closed interval in Ωi without changing its measure or

the property that |e (t ) | > Mi a.e. on it. Thus every Ωi is compact.

Now every Ωi is non-empty so define a sequence of points (ti ) by
selection from Ωi : ti ∈ Ωi . This is an infinite sequence in Ω1 which

is compact and so it converges to a finite limit t∗ ∈ Ω1.

From (8), it obtains that Mi < lim supt→ti |e (t ) | ≤ M , so as

i → ∞,Mi ↗ M and ti → t∗, and so lim supt→t ∗ |e (t ) | = M .

2. We will use a Hardy-type inequality which we now introduce.

A weight functionw : R→ R is a measurable function positive a.e.

in the interval (a,b) with 0 ≤ a < b ≤ ∞. Thew-weighted s-norm
of function f : (a,b) → R, with 0 < s < ∞ is:

∥ f ∥s,w := (

∫ b

a
| f (t ) |sw (t )dt )1/s . (9)

The Hardy operator H is defined by (H f ) (x ) =
∫ x
a f (t )dt . Then, if

f is non-negative, p,q satisfy 1 < p ≤ q < ∞, and u,v are weight

functions on (a,b), the following two statements, known as a Hardy

inequality, are equivalent [14]:
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Figure 17: Rectified EGM during normal rhythm (left) and its CWT spectrogram (right)

• there exists a constant C > 0 s.t.

∥H f ∥q,u ≤ C · ∥ f ∥p,v

• The following quantity is finite

A = sup

a<x<b

*
,

∫ b

x
u (t )dt+

-

(1/q ) (∫ x

a
v1−p

′

(t )dt

)
1/p′

< ∞

where, p′ =
p

p−1

The proof proceeds as follows. Let t∗ be as in part 1 of the theorem,

and write e = ∥e∥∞. Assume that e > 0 (otherwise the bound holds

trivially). Since e is continuous at t∗, there exists ε > 0 s.t. |e (t ) | > 0

over t∗ ± ε , so inf
[t ∗−ε,t ∗+ε] |e (t ) | := e > 0. Write t− = t∗ − ε, t+ =

t∗ + ε . We now assume without loss of generality that 0 < t−; if
not, we can shift e to the right to make it so (possibly increasing b
in the process), as this doesn’t change the value of the norms we

are computing. Therefore we have 0 ≤ a ≤ t−. Then there exists a

constant K > 0 s.t. e (t ) ≥ e ≥ Ke over [t−, t+], and so∫ x

t−
|e (t ) | dt ≥ Ke (x − t−), x ≤ t∗ + ε (10)

Denote by χI the characteristic function of interval I . Take f (t ) =
χ
[t−,t+] (t ) |e (t ) |: it is measurable and non-negative. Then

(H f ) (x ) =




0, x < t−∫ x
t ∗−ε |e (t ) |dt , t− ≤ x ≤ t+

a constant, x > t+
(11)

and by (10),

(H f ) (x )



= 0, x < t−

≥ Ke (x − t∗ + ε ), t− ≤ x ≤ t+

≥ 2εKe, x > t+
(12)

So combining Eq. 9 and Eq. 12,

∥H f ∥
q
q,u ≥

∫ t+

t−
Kqeq |x − t− |qu (x )dx +

∫ b

t+
(2εK )qequ (x )dx

≥ eq *
,

∫ t+

t−
Kq |x − t− |qu (x )dx +

∫ b

t+
(2εK )qu (x )dx+

-︸                                                           ︷︷                                                           ︸
Bε

= Bεe
q

Take v to be identically 1 over (a,b), u (t ) = e−t , and p = q = 2.

Then

A = sup

a<x<b

*
,

∫ b

x
e−tdt+

-

1/2 (∫ x

a
1dt

)
1/2

= sup

a<x<b

√
−e−b + e−x

√
x − a < ∞

Therefore, by Hardy’s inequality, there exists a constant C s.t.

B
1/q
ε e ≤ ∥H f ∥q,u ≤ C · ∥ f ∥p=2,v≡1 ≤ C ∥e∥2

Or, re-arranged,

e = ∥e ∥∞ ≤
C

B1/2ε
∥e ∥2

This completes the proof.

E COMPUTING THE BEST UNIFORM
APPROXIMATION

Dunham’s dynamic program [7] computes the uniform piece-wise

linear approximation with the smallest number of segments given

a maximum error ϵ . Let F (u) be the minimal number of segments

needed to approximate the data (x (i ))i≤N from x (0) to x (u) within
ϵ . The essential observation is that F obeys the optimality principle

F (u) = minv ∈V (u ) 1+F (v ) whereV (u) is the set of all pointsv ≤ u
such that the sequence x (v ), . . . ,x (u) can be approximated with

one segment within error ϵ . A standard DP can then find the optimal

solution.
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