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ABSTRACT
This paper surveys recent challenges and solutions in the design,
implementation, and verification of embedded software for robot-
ics. Emphasis is placed on mobile robots, like self-driving cars. In
design, it addresses programming support for robotic systems, se-
cure state estimation, and ROS-based monitor generation. In the
implementation phase, it describes the synthesis of control software
using finite precision arithmetic, real-time platforms and architec-
tures for safety-critical robotics, efficient implementation of neural
network based-controllers, and standards for computer vision ap-
plications. The issues in verification include verification of neural
network-based robotic controllers, and falsification of closed-loop
control systems. The paper also describes notable open-source
robotic platforms. Along the way, we highlight important research
problems for developing the next generation of high-performance,
low-resource-usage, correct embedded software.
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1 INTRODUCTION
There is a trend towards increased and higher-level autonomy
in robotics. The trend is most evident in mobile robots, such as
self-driving cars and Unmanned Aerial Vehicles (UAVs), but it also
affects personal robotics, warehouse robots (e.g., Kuka robots), and
other application domains such as medical devices. These robots
are tasked with understanding the world around them, planning
their actions in it, and more often than not, interacting with the
humans that also occupy that world.

The increased autonomy has two immediate correlates, which
form the basis for the issues we address in this paper. First, the
robots’ missions are increasingly complex, whether on the percep-
tion or action side, and go well beyond traditional objectives that
were restricted, for example, to pre-defined movements, or static
environments, or very low-level scene perception sufficient for
these limited tasks. Secondly, because these robots are operating
at human scale (on the roads, in homes and in warehouses) and
performing dangerous missions (like driving, mine inspection or
surgery), the correctness requirements are stringent and must be
proved to hold. Contrast this with the more traditional approach
in which satisfactory performance was established through testing
and experimentation, and boiled down to a best effort (albeit a
gargantuan one in some cases). The algorithms that govern these
robots, therefore, are pushing the limits of the theories and tools at
our disposal for checking functional correctness in a timely fashion,
which complicates the design and verification phases. The result-
ing code is also prompting the use of ever-higher performance
hardware and software architectures, and software components
(like neural nets). However, these are also much harder to analyze
rigorously, thus complicating the implementation phase. Finally, it
remains the case that software is best tested on the target hardware
and in the target software stack to reduce deployment surprises,
and this prompts the creation of realistic yet accessible robotic
platforms.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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This paper surveys the above issues and describes recent ap-
proaches to addressing them. In Section 2, we describe the design
challenges, focusing on the recent correct-by-construction para-
digm. We illustrate the potential of control synthesis by describ-
ing an approach to the automatic generation of correct motion
planners. We also describe the design of correct-by-construction
runtime monitors targeting ROS-based software, and the problem
of designing secure state estimators.

In Section 3, we describe implementation challenges. We first
tackle the problem of generating controller code that still meets
the guarantees offered by the continuous-space algorithm. Then,
we focus on the issues that arise in using Commercial Off-The
Shelf (COTS) heterogeneous architectures, including ill-specified
Graphics Processing Units (GPUs), for safety- and timing-critical
applications, and in using the under-specified OpenVX standard for
real-time computer vision applications. We conclude the section
with a discussion about the creation of efficient implementations
of neural network code.

Section 4 addresses verification challenges. It describes approaches
to verify the correctness of neural network-based controllers, and
a general testing framework for embedded software that includes
neural network components. Finally, Section 5 surveys a few no-
table open-source platforms that provide the complete instructions
for building, programming and using reduced-scale self-driving
cars, humanoids and manipulator arms.

2 DESIGN OF ROBOTIC SOFTWARE
A major impediment to developing large-scale robotic infrastruc-
ture with high-level autonomy is the lack of systematic design
and programming support. Autonomous robotic systems cut across
many layers of the system stack: from low-level physical dynamics,
sensing, control, and scheduling, to high-level software systems
issues such as goal specification, co-ordination, provisioning, and
fault tolerance. While different languages, IDEs, and APIs provide
support at different layers (e.g., Simulink and Stateflow for dynam-
ics modeling, ROS [76] for messaging, etc.), the programmer is often
left to navigate the zoo of languages, systems, and methodologies.
In this section, we will discuss how high-level specification and
formal methods-based automated synthesis can help us develop a
unified framework for solving complex problems in the robotics
domain.

2.1 Systematic Design and Programming
Support

Traditionally, the specification for a mobile robot has been the point-
to-point reachability with obstacle avoidance. In the last decade,
Linear Temporal Logic (LTL) [8] has been widely used to capture
complex specifications for the mobile robots and various method-
ologies have been used to synthesize trajectories automatically from
the specification. In one of those methodologies, a finite model for
the robot dynamics is first generated using an abstraction process
based on discretization of the configuration space [16], and then
game-theoretic or model checking-based synthesis techniques are
used to generate high level motion plans and low level control poli-
cies on the abstract model [17]. In another approach, SMT Solvers

or Mixed-Integer Linear Programming tools are used for the compo-
sition of motion primitives for the robots to synthesize trajectories
satisfying a given specification [47, 66, 80, 81, 98, 101].

In recent years, several systems have been designed to provide
a more uniform set of abstractions for multi-robot systems [28,
41]. These systems typically provide a high-level programming
model to specify tasks and a compiler and runtime system that
compiles the high-level tasks into particular plans executed by each
robot. The aim is to close the semantic gap between the declarative
specification of tasks at the level of the user and the low-level
details of managing individual distributedmobile robots, scheduling
and planning, etc. The analogy is with the cloud [24]: we expect
the cloud infrastructure to abstract away low-level details of the
software stack, allowing a high-level view of the application.

For example, Antlab [41] provides a declarative task specification
language based on linear-time temporal logic (LTL). The program-
ming model of Antlab represents the underlying world as a discrete
abstraction of physical space together with a set of predicates and
provides an abstraction for the set of available robots. The user does
not program individual robots or even know howmany robots there
are; instead, the user knows a set of action primitives the robots can
perform, and declaratively specifies a desired temporal sequence of
actions. The propositions in a task can range over spatial locations
(“reach location ℓ”) as well as action primitives (“pick up”, “drop”)
and the temporal connectives allow expressing application-level
behaviors over time. The quantification over robots allows the pro-
grammer to specify a task without referring to individual robots
but also helps express co-ordinated behaviors (“two robots follow
each other”). Specifically, the user does not need to know about
current states of the underlying robots; it is the responsibility of
the run-time system to figure out which robots to assign to a task,
how to schedule and plan the task, how to co-ordinate robots, and
how to ensure the system has high throughput.

The compiler for these systems implement a combined task and
path planner which gets as input a batch of user tasks and produces
optimal paths for a group of robots such that all the user tasks
are completed, if possible [57, 93]. The planning algorithm can
be implemented using an SMT solver (such as Z3 [27]) or an AI
planner supporting LTL constraints [70]. The plan for each robot is
implemented on top of the robot’s dynamic navigation stack. This
allows taking into account dynamic uncertainties in the robotic
environment, for example, dynamic obstacles or imprecision in
actuation, and implementing the plans in a receding-horizon style,
where deviations from an ideal plan are monitored and, if necessary,
re-planned. Finally, a software services layer provides services such
as provisioning and fault tolerance.

While these systems are an important first step, their application
is still limited to simple “warehouse style” tasks with a fixed and
usually small vocabulary of tasks. Currently, the planners in these
systems “string together" a fixed set of motion primitives. In future
systems, we expect to see a richer language of task specifications as
well as more scalable task and path planners, and one can imagine
more expressive capabilities programmed on the robots in almost
real-time. Finally, co-ordination between different robots are rather
limited in current systems. On the other hand, recent advances in
reinforcement learning techniques show that autonomous agents
can learn very expressive behaviors [49]. It will be interesting to
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see systems which can incorporate such expressive behaviors and
yet retain the simplicity of the programming abstraction and allow
end-to-end reasoning.

2.2 ROS-based design and monitor synthesis
Good design practice requires the creation of runtime monitors,
which are pieces of code that can monitor key properties of the
system’s behavior in real-time, report any violations, and possibly
enforce fail-safe behavior. Simple monitors to watch resources and
detect local faults are prevalent in robotic applications. However,
with the increased requirements in perception and control, current
robots and autonomous systems necessitate more complex monitor-
ing tasks during their operation. These complex monitoring tasks
range from enforcing safety and security properties and ensuring
the correct execution of synthesized plans, to pattern matching over
sensor readings to help perception. A promising direction is to gen-
erate these complex monitors automatically from their high-level
specification and integrate them into ROS-based design1. In the
following, we survey high-level monitor specification languages,
the generation of such complex monitors from these specifications,
and ROS-based tools.

Regular expressions and temporal logic are twomajor specification
languages to describe temporal patterns and properties. These for-
malisms provide powerful and well-studied frameworks to specify
temporal order and concurrency among various events and states.
Their many variants and extensions have been proposed to address
different aspects of complex monitoring tasks [12, 45]. In particular,
timed, quantitative, and parametric extensions of regular expressions
and temporal logic are very interesting for robotic applications. For
example, a pattern such that the value of a sensor X is below 4.2 for
10 seconds and then the value of the same sensor X is above 4.2 for 5
seconds involves timing constraints, numerical comparisons, and
variables that can be handled by these extensions.

Monitor generation from the high-level specification can be di-
vided into three approaches. In the first approach, the monitor is
designed to rewrite the original specification according to a set
of rules and the current input [78, 96]. Then, the monitor alerts
if a certain form has been obtained after the transformation. In
the second approach, the monitor is designed as an automaton,
which is essentially a big look-up table that contains all possi-
ble transformations for all possible inputs. Since the table is pre-
computed, the performance at runtime is considerably better than
rewriting-based monitors. However, this automata approach does
not scale well for the quantitative and timed extensions we men-
tioned above and automata-based monitors suffer from severe limi-
tations [11, 64, 65]. Specifically, the automata are potentially very
large, are non-compositional and non-extensible.

In the third approach, the monitor is designed to be a network of
small computation nodes. By its nature, this approach is composi-
tional, extensible, and offers several other theoretical and practical
advantages [72, 95]. Although this idea emerged very early in [23]
for regular expressions, the network approach was not exploited
much until the paper [46] in which authors essentially propose

1Robot Operating System (ROS), the de facto standard middleware for developing
robotic software. See www.ros.org.

network-based monitors generated from temporal logic specifica-
tions. Subsequent works have extended this approach for timed
specifications [15], quantitative [29], and parametric [14, 44].

These approaches and algorithms have been implemented in
several standalone tools such as [6, 13, 65, 77, 94]. However, such
fragmentation of tools, interfaces, and programming languages
makes monitoring a challenging technology to use in robotics. An
important achievement would be in developing an extensive frame-
work that handles specifications in a unified manner and generates
monitoring ROS nodes to be deployed in robotic applications. The
first project in this direction was ROSMOP2, which supports a sub-
set of MOP software monitoring framework [65]. More recently,
the tool REELAY3 has been proposed to generate network-based
monitors with several practical enhancements and ROS support.
As these tools make complex monitoring tasks more accessible in
robotics, we would see them integrated in perception and control
algorithms more often in the future.

2.3 Design for security: secure state estimation
The active nature of robotics, where data collected from various
sources are then used to make decisions and actions, opens the
door to new attack vectors, based in the physical world, that can be
extremely damaging. Classical cybersecurity countermeasures are
oblivious to such attacks. For example, if the adversary manipulates
physical/analog signals before digitization [84, 87], no amount of
digital security can help. It’s unsurprising, then, that a multitude of
fatal and life-threatening situations can be created by such attacks
as demonstrated by the recent sensor spoofing attacks on various
automotive and robotic platforms [84, 87, 102].

A very recent security trend is the exploitation of the continuous
dynamics of the robot to provide security [22, 39, 69, 86]. That
is, by using an accurate mathematical model for the underlying
physics of the robot, one can explain any discrepancy between
the measured sensor data and the expected measurements—as per
the model—as being the result of an adversarial attack. Once the
malicious sensors are detected and isolated, one can estimate the
state of the underlying physical system by using the data collected
from attack-free sensors. This technique is referred to as secure
state estimation.

Detecting and mitigating attacks on sensory data is, in general,
a combinatorial problem [69], which has been addressed either by
brute force search, suffering from scalability issues [22, 69], or via
convex relaxations using algorithms that can terminate in poly-
nomial time [39, 86] but are not necessarily sound. However, the
computational performance as well as the security guarantees can
be improved by leveraging results from formal methods literature
which lead to building an satisfiability-modulo-theory (SMT) en-
gines that is particularly tailored towards the secure state estimation
problem [85].

3 IMPLEMENTATION OF ROBOTIC
SOFTWARE

Preserving the theoretical correctness guarantees of an algorithm
post-implementation requires paying careful attention to the effects

2https://github.com/Formal-Systems-Laboratory/rosmop
3https://github.com/doganulus/reelay

www.ros.org
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of finite precision arithmetic and other implementation imprecisions.
The choice of target platform that runs the code fast enough and
within the power envelope is a crucial decision. Some algorithms
that are expensive in energy or memory, like neural net inference,
might need to be approximated, at the software or hardware levels,
to make them run on the target platform. Standards can help de-
velopers get a handle on an implementation’s characteristics, like
timing bounds. This section looks at each of these issues in turn.

3.1 Synthesis of Controller Software
The feedback controller for a robotic system is designed using real
arithmetic, considering the dynamics of the system to be continuous.
A mathematical analysis ensures the correctness of the designed
controller. However, when the controller is realized as software, the
dynamics of the system are discretized based on some chosen sam-
pling time, and finite precision arithmetic is used to represent the
variables. Now, one should ensure that the software implementa-
tion of the controller still satisfies the desired properties guaranteed
by the continuous-space design. One main property of interest for
robotic systems is practical stability or region stability [73], which
requires the controller to steer the output of the dynamical system
to a region around the desired value. Anta et al. [7] show that the
verification of the region stability property for the implemented
control system can be reduced, through a control-theoretic analysis,
to the problem of computing a bound on the error due to quanti-
zation effects introduced in the implementation of the controller
program. Now a program analysis technique can be employed to
calculate a bound on the implementation error. For the computation
of the error, Anta et al. employ a static program analysis technique
which is based on verification condition generation [100]. It reduces
the error bound computation question to a validity problem for
a formula in the combination theory of reals and bit-vectors, for
which off-the-shelf, efficient decision procedures are available [33].

One can leverage the error bound computation technique for
controller implementation to address the following control software
synthesis challenge: for a chosen finite precision arithmetic, design
a controller for which the implemented software has the least error
among all possible controllers. Generally, controllers are designed
to minimize the control cost (the power of the control signal) and
the state cost (the deviation of the state from the desired value). It
can be shown that the controller designed based on optimization
of such costs may produce a controller whose finite-precision im-
plementation has a significant error in the output. Majumdar et
al. [63] employ a stochastic optimization-based methodology [55]
to synthesize a feedback controller that minimizes both the state
and control cost along with the error in the finite-precision imple-
mentation of the controller software.

The feedback controllers for a dynamical system usually have
the form of a linear expression (for linear control systems [53]) or
a polynomial (for nonlinear control systems [56]). A naive compi-
lation of a controller expression may produce a program whose
output may significantly deviate from the controller designed using
real arithmetic, whereas a different order of evaluation may result
in a program producing outputs that are close to the values of the
real-valued expression on all inputs in its domain. One can devise
a compilation scheme to compile the arithmetic expressions for

the controllers to fixed-point arithmetic programs by finding an
optimal ordering of the arithmetic operations. Darulova et al. [26]
present such a compilation scheme that minimizes the error in the
controller program using fixed-point arithmetic with respect to
a naive compilation of the real-valued expression. The presented
technique is based on genetic programming [74], where the fitness
of each candidate program is determined based on the bound on
the error at the output of the program. To compute the bound on
the error, they employ a static analysis technique based on affine
arithmetic. Recently Darulova et al. [25] have demonstrated that as-
signing different precision to different variables may lead to further
improvement in the accuracy of the program.

Despite the progress made on the verification and synthesis of
controller software for linear systems and simple nonlinear sys-
tems, generalizing the approaches to complex robotic systems is
still challenging due to two main reasons. First, the verification of
the closed-loop control system with respect to a stability specifica-
tion relies on a control-theoretic analysis that reduces the verifica-
tion problem to a program analysis problem. The control-theoretic
analysis is based on Lyapunov function(s) [56] that establish the
stability of the closed loop. Most controllers for practical robotic
systems are nonlinear in nature. Synthesizing a Lyapunov function
for such systems is often very challenging. Recently introduced
neural network-based controllers for dynamical systems (e.g. [48])
hardly come with any stability guarantee in the form of a Lyapunov
function, resulting in the infeasibility of verification of the software
implementation of such controllers. Second, the error analysis of a
controller program relies on abstract interpretation [42] or reduc-
tion to an SMT problem [10]. For programs involving nonlinear
computations, both these approaches are unsatisfactory in terms
of either precision (in case of abstract interpretation) or scalability
(in case of SMT solving).

3.2 Real-time platforms for safety-critical
robotics

The increased levels of autonomy planned for vehicles and personal
robots require computation-intensive perception and planning al-
gorithms. Multi-core, heterogeneous computer architectures that
use Commercial Off-The Shelf (COTS) components can meet the
performance requirements of new applications. However, it is diffi-
cult to provide predictable timing guarantees when several cores
contend for shared resources, like memory or buses. Safety-critical
robotics applications (like navigation in a self-driving car) require
such timing guarantees in order to provide reliable performance
and assured safety. Thus an important research question is the de-
velopment of scheduling algorithms and corresponding analyses
for COTS architectures, perhaps customized to common or critical
algorithms like path planning.

In this context, the European Hercules project [19] studies the
suitability of existing hardware architectures, programming models
and real-time operating systems for safety-critical applications on
heterogeneous architectures, and should provide a wealth of hard
data to guide future research. E.g., in [40], a state-of-the-art path
planner is implemented on the Jetson TX1 with the Predictable
Execution model (PREM), which separates programs into memory
and compute phases that can be independently scheduled. It is
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shown that this reduces the Worst-Case Execution Time (WCET)
of the application, and reduces the sensitivity of DRAM accesses
to CPU interference. Similar studies for other path planners and
online monitoring code, to name a few, will enable a more reliable
deployment of embedded code. In particular, it will be interesting
to study the trade-offs for monitoring code between correctness of
output and timing-predictable execution.

A second issue, which arises when using Graphics Processing
Unit (GPUs) boards for computation-intensive tasks (e.g., data-
parallel inference or computer vision algorithms), is their propri-
etary nature and scant documentation about their scheduling [104].
The survey paper [104] provides a valuable compendium of pitfalls
when trying to ensure temporal correctness of GPU applications,
with an emphasis on autonomous driving. Alleviating these issues
should serve as a source of research problems. The ‘opaque’ na-
ture of GPU scheduling also makes it necessary to first infer their
behavioral rules and use these to estimate their worst-case timing
behavior. E.g., scheduling rules were inferred in [5] for NVIDIA’s
GPUs. However, any such inferred rules might be invalidated by
future changes to the hardware [9]. A long-term goal would be
to automate rule generation and validation in a more quantitative
manner, such that rule violations can be ranked and their impact
on a given application used as a guide for hardware choice and
programming.

Finally, wemention the ever-present issue of power consumption:
these new algorithms for autonomy are power-hungry. A rough
estimate based on publicly available data [68] indicates that a small
electric vehicle can have its drive time reduced by almost 62% if
it drives in autonomous mode. Profiling and reducing this power
consumption is essential, especially in domains, like the automotive
industry, where emissions are regulated and every Watt counts. A
reduction of power consumption will also decrease the cost of
the systems as they will use smaller batteries and less expensive
computing boards. Here, a joint optimization of perception and
control tasks can lead to power reductions [20, 68] and enable
smarter resource usage.

3.3 Efficient implementation of neural
network inference

A software artifact of special importance is Neural Networks (NNs):
their impressive successes in perception applications, like object
detection, makes them a natural choice for mobile robotics. How-
ever, their energy consumption and memory usage limit their use
to high-end GPU+CPU platforms, which might not be an option for
lighter or small form factor robots. E.g., convolutional NN AlexNet
uses 61 million parameters, 233MB and 1.5 billion FLOPs. Across
the hardware types that neural nets have been implemented on,
from FPGAs to SoCs (NVIDIA Tegra or Samsung Exynos) to custom
super-computers (like DaDianNao [21]), energy and memory are
important implementation criteria [89]. The creation of efficient
(low-power, low-memory) implementations of forward propaga-
tion, which is the operation that typically takes place on-board the
robot, is thus an important research problem in embedded robotic
software. As a starting point for researchers entering this field, a
tool for estimating a NN’s power consumption is available online4.

4At http://eyeriss.mit.edu/energy.html.

Methods to reduce energy and memory usage in NNs can be cat-
egorized into methods that do not impact accuracy (i.e., the original
and optimized NN produce bitwise identical results) and those that
sacrifice some accuracy for further energy or memory savings. The
survey [89] gives an excellent overview and comparison of these
two sets of methods, and in particular of data flow optimizations.
Here, we complement that survey with more recent results that fall
in the second, ‘lossy’, category.

Approximate computation is a general paradigm in which com-
putations are performed approximately at a lower energy cost [50],
and has naturally been applied in NNs to perform approximate
Multiply-Adds. The work in [51] introduces a new way to do ap-
proximate computation through the identification of opportunities
for computation reuse, then exploiting these opportunities in an
approximate, energy-efficient manner. Specifically, frequent input
patterns to a network’s layers are experimentally identified, and
their computation results stored, so they can later be retrieved (via
approximate matching), thus saving the cost of re-performing the
operation time and again. Results range from a 22.3% energy sav-
ings (with a NN accuracy of 98.3%, from a baseline accuracy of
98.5%) to 58.9% energy savings (with a NN accuracy of only 60.6%).
Moreover, the matching approximation degree is configurable on-
line, and it would be interesting to devise a ‘scheduling’ algorithm
for switching between approximation modes.

Binarization of a net binarizes the weights and activations of
the NN, thus turning the (expensive) multiplication into a boolean
operation. The recent work on Local Binary Pattern Networks [61]
(LBPNets) extends this idea by learning the binary pattern as part of
end-to-end supervised learning, as opposed to classical binarization
which uses a fixed, non-optimized pattern. This is followed with
dimension reduction by random projection. By replacing convo-
lutions by logical operations (comparisons), LBPNets save energy:
at the 45nm node, a comparator uses less than 3e-14 J, while a
32 bit multiply-adder uses at least 3.7e-12 J [61]. More generally,
overall size and latency are significantly reduced relative to a full
Convolutional NN, at the cost of a modest reduction in accuracy.
While LBPNets are targeted to so-called edge devices (e.g., sensors
with some computational power), it would be interesting to explore
their applicability to more demanding applications. A different ex-
tension of binarized networks uses binarized separable filters to
perform the neuronal operations [60], thus reducing the model size.
Corresponding training algorithms are developed, at the cost of a
mild accuracy decrease compared to the original binarized CNN.

3.4 The OpenVX standard for computer vision
applications

Vision-based sensors are widely used for robot navigation as cam-
eras are cost-effective sensors to perceive the environment. Re-
cently, the Kronos Group has introduced a ratified standard named
OpenVX [43] to facilitate the development of real-time embedded
applications based on computer vision techniques. In the OpenVX
environment, computer vision computations are represented as di-
rected graphs. The nodes in the graph represent the vision-related
functions, and the edges capture the precedence and data depen-
dency among the tasks. Though OpenVX can be applied on various

http://eyeriss.mit.edu/energy.html
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platforms, GPUs have been the most popular platform to implement
OpenVX applications.

On safety-critical robots, the implementation of the vision al-
gorithm needs to satisfy strict real-time constraints to ensure end-
to-end latency in the control loops. OpenVX does not currently
provide enough support for hard real-time computations. For ex-
ample, concepts like priorities and graph invocation rates that are
essential for real-time applications are missing from the standard.
Moreover, the computation associated with a graph is expected to
get executed monolithically, which hinders the exploitation of such
parallelism.

Researchers have attempted to create a modified version for
OpenVX which will explicitly address the real-time requirements
of the vision-based applications. E.g., Elliot et al [36] and Yang
et al. [52] treated the nodes in the graph as schedulable entities
which allowed more parallelism, leading to an improvement in the
bound on the response time. In a recent work, Yang et al. [103]
have developed a fine-grained representation of OpenVX graphs,
which provides further scope for parallelizing the computations in
a vision application. In this model, the computation corresponding
to a node in the graph is further subdivided into a finer set of
computations, and also the consecutive jobs corresponding to the
same task are allowed to execute in parallel. In a case study on
a computer vision application for pedestrian detection using six
cameras, the authors in [103] demonstrate that the fine-grained
model can guarantee a bounded response for all the six cameras,
whereas the coarse-grained model can support only one camera.

The remedying of these and other deficiencies can stimulate
future work in real-time standards for vision applications, and more
fine-grained models of the tasks for computer vision applications
can be expected to be part of the OpenVX standard in the future,
enabling its widespread adaptation in the robotics community.

4 VERIFICATION AND TESTING OF ROBOTIC
SOFTWARE

The reported failures of complex robotics software in safety-critical
situations, sometimes leading to human fatalities [1], emphasize the
continuing need for more powerful methods to test and verify the
software, and underlying algorithms. We distinguish between two
broad categories for checking the safety (and more generally, the
correctness) of a system: the first is Testing, in which the system (or a
model of it) is simulatedN times following some simulation strategy,
and the outcome of these simulations is taken to be indicative (in
a more or less formal sense) of the true correctness of the system.
Note that testing is usually incomplete: failure to find a bug in N
simulations does not rule out that a bug does exist.

The other category is formal verification methods, which per-
forms automated reasoning on a mathematical model of the system
to yield exact results. That is, unlike testing, if the system can pro-
duce an incorrect behavior, then a formal verification method will
find it (completeness), and if the method does return an incorrect
behavior, then that is indeed an error in the model (soundness)5. Sec-
tion 2.1 described the application of formal methods to the control

5Approximate formal methods might not be sound (e.g. over-approximate reachability
may find spurious errors). They are necessary, for example, to deal with systems with
general continuous dynamics, but we don’t emphasize this distinction here.

synthesis problem, and Section 3.1 to the verification of a controller
code. This section focuses on an emerging area in the checking of
robotic software, specifically, the verification and testing of neural
network models and of systems containing neural networks. This
clearly has applications beyond embedded software.

4.1 Verification of neural network-based
robotic controllers

Advances in designing robotic controllers based on machine learn-
ing components has created an urgency to study their safety and
reliability [58, 59, 82, 83]. Several works have been reported in the
last few years attempting to apply formal verification techniques
to machine learning components in general, and neural networks,
in particular. The work in this area can be classified into two cate-
gories: (i) component-level and (ii) system-level verification.

In general, verifying formal properties of feed-forward neural
networks is a challenging task because the number of their parame-
ters is very large (several millions). Recent works focused on specific
NN architectures that are amenable to verification using Satisfiabil-
ityModulo Theories (SMT) solvers and Integer Linear Programming
(ILP) solvers. In the first class of recent works—component-level
verification—researchers focused on verifying NNs against input-
output specifications when the NN nonlinearity is restricted to
be a piecewise affine function known as the Rectifier Linear Unit
(ReLU) [18, 34, 35, 54, 75, 79]. Such input-output techniques com-
pute a guaranteed range for the output of a deep neural network
given a set of inputs represented as a convex polyhedron. A central
difficulty in such a task is to consider all possible phases of all
ReLU nonlinear functions, which is daunting given that NNs can
have thousands of ReLUs (A network with n ReLUs has 2n phase
combinations). A common technique is to relax the ReLU nonlin-
ear function to a linear/convex function. This relaxation allows to
quickly rule out large combinations of the ReLU phases that will
not violate the input-output specifications [18, 35].

To circumvent the drawback of using simple input-output range
specifications and reason directly about system safety, the second
class of recent works focused on finding corner-cases that lead
to the violation of system-level safety specifications. To that end,
recent works focused on testing and semi-formal verification (e.g.,
falsification) [31, 62, 71, 88, 90, 97, 99, 105]. In these works, the
objective is to generate several scenarios which trigger different
parts of the NN. Different algorithms are proposed for generat-
ing these scenarios including random sampling [31], generative
adversarial networks [105], and node coverage [71, 90]. These ap-
proaches might scale to larger models, but we are still a long way
from tackling the most successful network architectures in use
today.

4.2 Falsification of the closed-loop control
system

When the system model of interest falls in a class that cannot be
handled by formal verification, or the model size grows too large,
one has to resort to testing. This is currently necessary for embed-
ded control systems that incorporate a perception NN: the size of
the latter makes it well outside the scope of formal methods. This
section describes recent approaches to the testing of self-driving
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cars, as a prototypical example of control+perception NN system.
They can be divided as follows:
• approaches that test the control sub-system separately from
the perception, under a bounded error model on the percep-
tion’s output [38, 67, 92]. In essence, this is the ‘traditional’
setup for testing of embedded and cyber-physical systems.
• approaches that test the control+perception jointly, and the
testing is guided by the control objectives, which is ulti-
mately what matters (rather than just finding perception
errors that don’t affect the control) [4, 91].
• approaches that test the two sub-systems separately, but
couple the two tests as described below [32].

Almost all of the above leverage a testing technique known as
Robustness-Guided Testing (RGT) [2, 37]. Briefly, in RGT, the sys-
tem’s correctness is specified as a formula in a temporal logic, and
the satisfaction of the formula by a finite-duration system execution
x is encoded in a real-valued function f such that f (x ) < 0 implies
that x violates the formula. Thus, the search for violations, or falsi-
fiers, can be done by minimizing f over the space of finite-duration
executions x [2, 6, 30]. This approach is broadly applicable since
it only requires the ability to obtain system executions, so even
black-box systems can be tested.

The works in [38, 67, 92] do not run a perception pipeline in the
test loop. In [67], the output of the perception sub-system ismodeled
as a noisy state estimate with known error bound. The control sub-
system is modeled as a hybrid dynamical system and a combination
of SMT-solving (a formal method) and RGT, developed in [3], is
applied to quickly find control errors. This approach is applicable
to perception tasks that have a continuous output for which we can
define a useful measure of error, like localization error; it will be
useful to extend it to discrete outputs (like binary object detection).
Developing new ways of deploying this combination of exhaustive
verification and RGT will be useful in achieving further speedups.
In [92], a similar stochastic optimization setup is used to search for
collisions between vehicles. In [38], reachability (another formal
method) is combined with local sensitivity analysis of blackbox
models to find errors in Automatic Emergency Breaking, and assess
the risk of the automotive components. This work was extended
with control synthesis and implemented in the tool DryVR6.

In [4], RGT is applied directly to the problem of finding errors
in a photo-realistic simulation of a self-driving car. The car detects
objects in its video feed using the YOLO NN, and uses a lattice plan-
ner with a low-level PID tracker to navigate a T-junction. Results
show that in this context, RGT can find a combination of starting
position and velocity of the cars at the T-junction,and a time of day,
such that the object detector NN will make certain errors that lead
to a collision. The work in [91] also applies RGT to the falsifica-
tion of a self-driving car system’s simulation, and further develops
accelerations based on covering arrays, and compares different op-
timization strategies for this problem. In this area, finding good
optimization heuristics that may be tuned to the NN structure is a
useful problem to pursue.

The approach in [32] divides the falsification task in two: first,
run RGT on the control sub-system with the NN output fixed to
pessimistic (always wrong) and optimistic (always right) values,
6See https://github.com/qibolun/DryVR_0.2.

and find bugs in both cases; and secondly, search (an abstraction of)
the input space of the NN7 to see whether it canmake a mistake that
activates the control bug. Current results indicate the usefulness
of this approach for finding bugs. It would be useful to extend this
decomposed approach to handle multi-frame perception errors and
to relax the optimistic/pessimistic assumptions.

In all the above approaches, the question remains about the
value of testing the NN with synthetic data (here, synthetic video).
While [4] studies this question from both an algorithm-specific and
algorithm-agnostic way, there is much computer vision work to be
done to answer this question.

5 OPEN-SOURCE PLATFORMS
Ultimately, embedded software needs to be tested and profiled on
the target hardware that it is meant to run on. The approaches
to testing and verification surveyed above go a long way towards
reducing and bounding surprises at deployment time, but these
cannot be eliminated, as they are caused by a wide variety of fac-
tors that invalidate the assumptions made during the test efforts.
Such factors include the rest of the software stack, the quality of
the sensors, actuators, and communication infrastructure, and the
physical environment. This can be an impediment to academic re-
search groups that may be experts in one area of embedded software
development, but not the entire process of building a functioning,
useful robot. Open-source robotics platforms provide a solution to
this very problem. An open platform is like a complete recipe for
building, programming and using a robot, like a self-driving car,
from scratch. In this section, we survey some open platforms that
are well-supported, relatively affordable, and extensible. There are
certainly others, but here we focus on platforms that are simple
enough that most engineering students can build them, yet feature-
rich enough that they present most of the common challenges faced
in real-world deployment.

The first platform is the F1/10 autonomous race car (f1tenth.org),
which is derived from the MIT Racecar8. F1/10 is actually three
efforts: a) an open-source 1/10th -scale autonomous race car, b) a set
of educational materials on basic concepts of perception, planning
and control, currently being built into a full semester course, c)
and a yearly racing competition open to teams from around the
world. Notable features of F1/10 are its use of a powerful mechanical
chassis that provides realistic physics for testing navigation and
control algorithms; the ROS-based software stack that is easily
extended (e.g., teams wishing to use a camera instead of the $1,500
LiDAR can do so); and the F1/10 simulator that allows algorithm
testing within the deployment software stack and on the target
hardware. The platform can also be used for formal verification
and online monitoring research, and current work seeks to create
a Runtime Monitoring ROS package which uses the REELAY tool
mentioned in Section 2.

The Berkeley Autonomous Race Car (barc-project.org) is an open
platform for autonomous driving whose focus is on control design
and cloud data collection. Built on the same mechanical chassis as
F1/10, it uses the Odroid XU4 as computer, which is less powerful
than the Jetson TX1/TX2 used in F1/10.

7The input space is the set of single frames around a given frame.
8 https://mit-racecar.github.io/

https:// github.com/qibolun/DryVR_0.2
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At a lower price point and with more computational and mechan-
ical limitations, we mention two platforms: the first is TurtleBot3
from Robotis and Open Robotics. It is a small dual-wheeled mobile
robot. It features a Raspberry Pi 3, a Robotis OpenCR board, and
touch, infrared, color, and IMU sensors. The second is Duckietown
(duckietown.mit.edu), which is the least expensive mobile platform
at $150, and has a nice ‘fleet mode’ to easily enable multi-robot
scenarios.

Finally, we mention Poppy (www.poppy-project.org), a platform
for interactive robotics, which offers instructions for building (or
purchasing parts of) a humanoid or manipulator arm. Poppy has
an emphasis on modularity of construction and versatility of appli-
cations.

6 CONCLUSIONS
This is an exciting time for researchers in the domain of embedded
software for robotics. The increased demands placed by autonomy
on the hardware and software of robotic platforms leads to rich
new areas of research in all development phases, from design to
deployment and beyond. This has led to a natural, yet challenging,
convergence of ideas from artificial intelligence, control theory,
formal methods, digital and analog design and software engineering.
This survey highlights the most salient challenges that arise and
recent approaches to tackling them. Much remains to be done.
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