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Abstract—Implantable medical devices are safety-critical systems whose incorrect operation can jeopardize a patient’s health, and
whose algorithms must meet tight platform constraints like memory consumption and runtime. In particular, we consider here the case
of implantable cardioverter defibrillators, where peak detection algorithms and various others discrimination algorithms serve to
distinguish fatal from non-fatal arrhythmias in a cardiac signal. Motivated by the need for powerful formal methods to reason about the
performance of arrhythmia detection algorithms, we show how to specify all these algorithms using Quantitative Regular Expressions
(QREs). QRE is a formal language to express complex numerical queries over data streams, with provable runtime and memory
consumption guarantees. We show that QREs are more suitable than classical temporal logics to express in a concise and easy way a
range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today’s arrhythmia detection
devices. The proposed formalization also opens the way to formal analysis and rigorous testing of these detectors’ correctness and
performance, alleviating the regulatory burden on device developers when modifying their algorithms. We demonstrate the
effectiveness of our approach by executing QRE-based monitors on real patient data on which they yield results on par with the results
reported in the medical literature.
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1 INTRODUCTION

IN modern medical devices, signal processing (SP) algo-
rithms are tightly integrated with decision making algo-

rithms, so that the performance and correctness of the latter
critically depends on that of the former. Thus, analyzing the
device’s decision making in isolation of its SP would pro-
vide an incomplete picture of the device’s overall behavior.

We consider here the specific case of Implantable Car-
dioverter Defibrillators (ICDs) where a Peak Detection (PD)
algorithm is first executed on the input voltage signal,
known as an electrogram (see Fig. 1). The PD algorithm
generates, as output, a timed boolean signal where a 1 rep-
resents a peak (local extremum) caused by a heartbeat. This
boolean output signal is then used by the downstream dis-
crimination algorithms to differentiate between fatal and non-
fatal rhythms. Around 10% of an ICD’s erroneous decisions
are due to over-sensing (too many false peaks detected) and
under-sensing (too many true peaks missed) [31]. This leads
to an inaccurate estimate of both the heart rate and to an
imprecise calculation of the timing relations between the
contractions of the heart’s chambers.
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One of the main challenges is how to formally verify
the properties of ICD algorithms for cardiac arrhythmia
discrimination. In particular there is a a need for a unified
language to express and analyze both the PD and discrimination
tasks that are currently at the heart of modern ICD technology.
The desired language should be formal (not ambiguous, with
a well-defined semantics), expressive enough to be easy to
use, and it should guarantee runtime and memory con-
sumption bounds for the resulting programs. One common
approach from the computing literature would be to view
the ICD tasks as specification-based monitoring problems [10],
[11]. Namely, one can try to express the PD and discrimina-
tion tasks as requirements in some temporal logics [12]: i.e.,
write a specification which is true exactly when the signal
(in a given window) has a peak, and another one which is
true exactly when the rhythm (in that window) displays an
arrhythmia. Monitor synthesis then automatically translates
these specifications into detection algorithms and code.

However, as shown in [4], this approach is impractical
for the peak detection and discrimination tasks we are con-
cerned with. Despite the increasingly sophisticated variety
of temporal logics proposed in the literature [10], [15], [19],
they turn out to be inadequate to express, in one concise for-
malism, both PD algorithms and arrhythmia discriminators.
It is worth noting that PD is a very common signal process-
ing primitive that is employed in many domains beyond
medical applications (i.e., earthquake detection), and that
arrhythmia discriminators are present in cardiac devices
other than ICDs, such as Implantable Loop Recorders and
pacemakers. Thus, the observed limitations of temporal
logics extend beyond ICD algorithms.

PD and discrimination require performing a wide range
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Fig. 1: Rectified EGM during normal rhythm (left) and its CWT spectrogram (right)

of numerical operations over data streams, where the data
stream is the incoming cardiac voltage signal (electro-
gram) observed in real-time. For example, a commercial
PD (shown in Section 5) defines a peak as a value that
exceeds a certain time-varying threshold, and the threshold
is periodically re-initialized as a percentage of the previous
peak’s value. As another example, the Onset discriminator
compares the average heart rate in two successive windows.
Thus, the desired formalism must enable value storage, time
freezing, various arithmetic operations, and nested com-
putations, while remaining legible and succinct, and enabling
compilation into efficient implementations.

For this purpose, we propose here the use of
Quantitative Regular Expressions (QREs) to program ICD
tasks for arrhythmia detection. QREs, described in Sec-
tion 3, are a declarative formal language based on classical
regular expressions for specifying numerical queries on data
streams [5]. QREs’ ability to interleave user-defined compu-
tation at any nesting level of the underlying regular expres-
sion gives them significant expressiveness. QREs can also be
evaluated in a runtime- and memory-efficient way, which
is an important consideration for resource-constrained im-
planted medical devices.

In [4] we showed the versatility of QREs by encoding
peak detection as QRE programs. In particular, we consid-
ered three different peak detectors:

1) A Wavelet Peak with Maxima (WPM) detector, which
operates in the wavelet domain (Section 2),

2) A Wavelet Peaks with Blanking (WPB) detector [4], our
own modification of WPM that sacrifices accuracy for
efficiency, and

3) A Medtronic Peak (MDT) detector [4], which oper-
ates in the time domain, and is implemented in an
Implantable Cardioverter Defibrillator (ICD) on the
market today.

In this paper, we extend our preliminary work presented
in [4] with the following results:

• We update the QRE programs of peak detectors using
the StreamQRE framework recently introduced in [6]
and implemented as a Java library in [2]

• We show how to program, within the same language,
the discriminators used in single-chamber ICDs of St.
Jude Medical as described in [29], thus demonstrating

that QRE is suitable for both peak detection and dis-
crimination

• We demonstrate the QREs programs for discrimination
on real patient data.

We have also expanded the paper to contain a formal
introduction to the QRE language.
Paper organization. Section 2 provides the necessary math-
ematical background to understand the peak characteriza-
tion in the wavelet domain. Section 3 introduces the QRE
language and basic constructs. The QRE encoding of the
WPM peak detector is provided in Section 4. The operation
of three detectors is illustrated by running them on real
patient electrograms in Section 5. In Section 6 we present the
St. Jude Medical arrhythmia discrimination algorithm, with
its QRE implementation discussed in Section 7. We illustrate
its operation in Section 8. In Section 9 we review the related
literature, while in Section 10 we draw our conclusions and
discuss future work.

2 PEAKS IN THE WAVELET DOMAIN

Rather than confine ourselves to one particular peak detec-
tor, we first summarize a general definition of singularities
due to Mallat and Huang [25], which naturally gives rise
to a peak detection algorithm. This definition operates in
the wavelet domain, so a brief overview of the wavelet
transform is first provided.

2.1 The Wavelet Transform
Let {Ψs}s>0 be a family of functions, called wavelets, which
are obtained by scaling and dilating a so-called mother
wavelet ψ(t): Ψs(t) = 1√

s
ψ
(
t
s

)
. The wavelet transform Wx

of signal x : R+ → R is the two-parameter function:

Wx(s, t) =

+∞∫
−∞

x(τ)Ψs(τ − t) dτ (1)

A common choice of ψ for peak detection is the nth deriva-
tive of a Gaussian, that is: ψ(t) = dn

dtnGµ,σ(t). Eq. (1)
is known as a Continuous Wavelet Transform (CWT), and
Wx(s, t) is known as the wavelet coefficient.

Parameter s in the wavelet ψs is known as the scale of
the analysis. A smaller value of s (in particular s < 1)
compresses the mother wavelet, so that only values close
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to x(t) influence the value of Wx(s, t) (see Eq. (1)). Thus,
at smaller scales, the wavelet coefficient Wx(s, t) captures
local variations of x around t, and these can be thought
of as being the higher-frequency variations, i.e., variations
that occur over a small amount of time. At larger scales
(in particular s > 1), the mother wavelet is dilated, so that
Wx(s, t) is affected by values of x far from t as well. Thus, at
larger scales, the wavelet coefficient captures variations of x
over large periods of time.

Fig. 1 shows a Normal Sinus Rhythm EGM and its
CWT |Wx(s, t)|. The latter plot is known as a spectrogram.
Brighter colors indicate larger values of coefficient mag-
nitudes |Wx(s, t)|. It is possible to see that early in the
signal, mid- to low-frequency content is present (bright
colors mid- to top of spectrogram), followed by higher-
frequency variation (brighter colors at smaller scales), and
near the end of the signal, two frequencies are present: mid-
range frequencies (the bright colors near the middle of the
spectrogram), and very fast, low amplitude oscillations (the
light blue near the bottom-right of the spectrogram).

2.2 Wavelet Characterization of Peaks

Consider the CWT |Wx(s, t)| shown in Fig. 1. The coeffi-
cient magnitude |Wx(s, t)| is a measure of signal power at
(s, t). At larger scales, one obtains an analysis of the low-
frequency variations of the signal, which are unlikely to
be peaks, as the latter are characterized by a rapid change
in signal value. At smaller scales, one obtains an analysis
of high-frequency components of the signal, which will
include both peaks and noise. These remarks can be put on
solid mathematical footing [26, Ch. 6]. Therefore, for peak
detection one must start by querying CWT coefficients
that occur at an appropriately chosen scale s̄.

At a fixed scale s̄, |Wx(s̄, ·)| is a function of time. The
next task is to find the local maxima of |Wx(s̄, t)| as t varies,
because these are precisely the times when energy variations
at scale s̄ are locally concentrated. Thus peak characteriza-
tion further requires querying the local maxima at s̄.

Not all maxima are equally relevant: only those with
value above a threshold, since these are indicative of signal
variations with large energy concentrated at s̄. Therefore,
we should only consider local maxima with a value above
some threshold p̄.

Maxima in the wavelet spectrogram are not isolated: as
shown in [26, Thm. 6.6], when the wavelet ψ is the nth

derivative of a Gaussian, the maxima belong to connected
curves s 7→ γ(s) that are never interrupted as the scale
decreases to 0. These maxima lines can be clearly seen in
Fig. 1: they are the vertical lines of brighter color extending
all the way to the bottom. Multiple maxima lines may
converge to the same point (0, tc) in the spectrogram as
s → 0. As shown in [25], singularities in the signal always
occur at the convergence times tc. For our purposes, a
singularity is a time when the signal undergoes an abrupt
change (specifically, the signal is poorly approximated by
an (n+1)th-degree polynomial at that change-point). These
convergence times are then the peak times that we seek.

Although theoretically, the maxima lines are connected,
in practice, signal discretization and numerical errors will
cause some interruptions. Therefore, rather than look for

truly connected maxima lines, we only look for (ε, δ)-
connected lines: given ε, δ > 0, an (ε, δ)-connected curve γ(s)
is one such that for any s, s′ in its domain, |s− s′| < ε =⇒
|γ(s)− γ(s′)| < δ.

A succinct description of this Wavelet Peaks with Maxima
(WPM) is then:

– (Characterization WPM) Given positive reals s̄, p̄, ε, δ >
0, a peak is said to occur at time t0 if there exists a (ε, δ)-
connected curve s 7→ γ(s) in the (s, t)-plane such that
γ(0) = t0, |Wx(s, γ(s))| is a local maximum along the
t-axis for every s in [0, s̄], and |Wx(s̄, γ(s̄))| ≥ p̄.

The choice of values s̄, ε, δ and p̄ depends on prior knowl-
edge of the class of signals we are interested in. Such choices
are pervasive in signal processing, as they reflect application
domain knowledge.

3 A QRE PRIMER

The specification of discrimination and PD (Section 2) re-
quires a language that: 1) has a rich set of numerical op-
erations, 2) supports matching of complex patterns in the
signal, and 3) enables the synthesis of time- and memory-
efficient implementations. This led to the consideration of
the StreamQRE language and execution engine [6], [27].

The basic semantic objects of the QRE language are
called streaming functions, and they describe the transforma-
tion of an input stream to an output stream. More specifi-
cally, a streaming function is a partial function f : D∗ ⇀ C
from finite sequences of input data items (of type D) to
output values (of type C). A crucial notion is the rate of
a streaming function that captures its domain. In other
words, as the function reads the input data stream, a prefix
of the input triggers the production of an output value
exactly when the prefix matches the rate. In the StreamQRE
language, the rates are required to be regular, and therefore
can be captured by symbolic regular expressions. This leads
to efficient decision procedures for constructing well-typed
expressions.

3.1 Quantitative Regular Expressions

We will introduce now the language of Quantitative Regular
Expressions (QREs) for representing stream transformations.
For brevity, we also call these expressions queries. A query
represents a streaming transformation whose domain is a
regular set over the input data type.

To define queries, we first choose a typed signature
which describes the basic data types and operations for
manipulating them. We fix a collection of basic types, and we
write A,B, . . . to range over them. This collection contains
the type Bool of boolean values, and the unit type U
whose unique inhabitant is denoted by def. It is also closed
under the cartesian product operation × for forming pairs
of values. Typical examples of basic types are the natural
numbers N, the integers Z, the rationals Q, and the real
numbers R. We write a : A to mean that a is of type A.
For example, we have def : U.

We also fix a collection of basic operations on the basic
types, for example the k-ary operation op : A1×· · ·×Ak →
B. The identity function on D is written as idD : D → D,
and the operations π1 : A × B → A and π2 : A × B → B
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are the left and right projection respectively. We assume
that the collection of operations contains all identities and
projections, and is closed under pairing and function com-
position. To describe derived operations we use a variant of
lambda notation that is similar to Java’s lambda expressions
[1]. That is, we write (A x)->t(x) to mean λx:A.t(x), which
is an (anonymous) function that takes an argument x of type
A and returns the value t(x). We write (A x, B y, C z) ->
t(x, y, z) to mean λx:A, y:B, z:C.t(x, y, z). For example, the
identity function on D is (D x) -> x, the left projection on
A × B is (A x, B y) -> x, the right projection on A × B
is (A x, B y) -> y, and (D x) -> def is the unique function
from D to U. We will typically use lambda expressions in
the context of queries from which the types of the input
variables can be inferred, so we will omit the types as in
(x, y)->x.

For every basic type D, assume that we have fixed a
collection of atomic predicates, so that the satisfiability of their
Boolean combinations (built up using the Boolean opera-
tions: and, or, not) is decidable. We write ϕ : D → Bool
to indicate that ϕ is a predicate on D, and we denote by
trueD : D → Bool the predicate that is always true. The
predicate ((Z x) -> x > 0) : Z → Bool is true of the strictly
positive integers.
Example 3.1. We consider a Boolean ventricular heart signal,
where the data items are values of type B = {0, 1}. A
value 1 indicates a ventricular contraction of the heart, and
a value 0 indicates the absence of a contraction. The signal
is sampled uniformly with a sampling rate of f Hz. The
predicates ¬isV and isV test if a Boolean value is zero or
one respectively. �

For a type D, we define the set of symbolic regular
expressions over D [34], denoted RE〈D〉, with the grammar:

r ::= ϕ | [predicate on D]
ε | [empty sequence]
r t r | [nondeterministic choice]
r · r | [concatenation]

r∗ [iteration].

The concatenation symbol · is sometimes omitted, that is, we
write rs instead of r · s. The expression r+ (iteration at least
once) abbreviates r · r∗. We write r : RE〈D〉 to indicate the r
is a regular expression over D. Every expression r : RE〈D〉
is interpreted as a set JrK ⊆ D∗ of finite sequences over D:

JϕK , {d ∈ D | ϕ(d) is true}
and the rest of the regular construct have their usual inter-
pretations. Two expressions are said to be equivalent if they
denote the same language.
Example 3.2. The symbolic regular expression (¬isV)∗ ·isV
denotes sequences of samples that contain a single ventric-
ular beat (contraction) at the end. �

The notion of unambiguity for regular expressions [13]
is a way of formalizing the requirement of uniqueness of
parsing. The languages L1, L2 are said to be unambiguously
concatenable if for every word w ∈ L1 · L2 there are unique
w1 ∈ L1 and w2 ∈ L2 with w = w1w2. The language L is
said to be unambiguously iterable if for every word w ∈ L∗

there is a unique integer n ≥ 0 and unique wi ∈ L with w =
w1 · · ·wn. The definitions of unambiguous concatenability
and unambiguous iterability extend to regular expressions
in the obvious way. Now, a regular expression is said to be
unambiguous if it satisfies the following:

1) For every subexpression e1 t e2, e1 and e2 are disjoint.
2) For every subexpression e1 · e2, e1 and e2 are unambigu-

ously concatenable.
3) For every subexpression e∗, e is unambiguously iterable.

Checking whether a regular expression is unambiguous can
be done in polynomial time. For the case of symbolic regular
expressions this results still holds, under the assumption
that satisfiability of the predicates can be decided in unit
time [5].

The rate R(f) of a query f is a symbolic regular ex-
pression that denotes the domain of the transformation that
f represents. The definition of the query language has to
be given simultaneously with the definition of rates (by
mutual induction), since the query constructs have typing
restrictions that involve the rates. We annotate a query f
with a type QRE〈D,C〉 to denote that the input stream has
elements of type D and the outputs are values of type C .

Atomic queries. The basic building blocks of queries
are expressions that describe the processing of a single
data item. Suppose ϕ : D → Bool is a predicate over
the data item type D and op : D → C is an opera-
tion from D to the output type C . Then, the atomic query
atom(ϕ, op) : QRE〈D,C〉, with rate ϕ, is defined on single-
item streams that satisfy the predicate ϕ. The output is the
value of op on the input element.

Notation: It is very common for op to be the identity
function, and ϕ to be the always-true predicate. So, we
abbreviate the query atom(ϕ, idD) by atom(ϕ), and the
query atom(trueD) by atom().
Example 3.3. For the Boolean ventricular heart signal, the
query that matches a single item that is a heartbeat and
returns nothing is f = atom(isV, x-> def). The type of f is
QRE〈B,U〉 and its rate is isV. �

Empty sequence. The query eps(c) : QRE〈D,C〉, where c
is a value of type C , is only defined on the empty sequence
ε and it returns the output c.

Iteration. Suppose that we want to iterate a computation
f : QRE〈D,A〉 over consecutive subsequences of the input
stream and aggregate all these output values sequentially
using an initial value c : B and an aggregation operation
op : B ×A→ B. The iteration query

iter(f, c, op) : QRE〈D,B〉
describes this computation. More specifically, we split the
input stream w into subsequences w = w1 w2 . . . wn, where
eachwi matches f. The output values a1 a2 · · · an with ai =
f(wi) are combined using the list iterator left fold with start
value c : B and aggregation operation op : B × A → B.
This can be formalized with the combinator

fold : B × (B ×A→ B)×A∗ → B,

which takes an initial value b : B and a stepping map op :
B×A→ B, and iterates through a sequence of values of A:

fold(b, op, ε) = b fold(b, op, γa) = op(fold(b, op, γ), a)
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for all sequences γ ∈ A∗ and all values a ∈ A. For example,
fold(b, op, a1a2) = op(op(b, a1), a2).

In order for iter(f, c, op) to be well-defined as a func-
tion, every input stream w that matches iter(f, c, op) must
be uniquely decomposable into w = w1w2 . . . wn with
each wi matching f. This requirement can be expressed
equivalently as: the rate Rf is unambiguously iterable.

Combination and application. Assume the queries f
and g describe stream transformations with outputs of type
A and B respectively, and process the same set of input
sequences of elements of type D, and op is a function of
type A×B → C . Then,

combine(f, g, op) : QRE〈D,C〉
describes the computation where the input is processed
according to both f and g in parallel and their results are
combined using op. This computation is meaningful only
when both f and g are defined on the input sequence. So,
we demand w.l.o.g. that the rates of f and g are equivalent.

This binary combination construct generalizes to an ar-
bitrary number of queries. For example, we write

combine(f, g, h, (x, y, z)-> op(x, y, z))

for the ternary variant. In particular, we write apply(f, op)
for the case of one argument.

Quantitative concatenation. Suppose that we want to
perform two streaming computations in sequence: first exe-
cute the query f : QRE〈D,A〉, then the query g : QRE〈D,B〉,
and finally combine the two results using the operation
op : A×B → C . The query

split(f, g, op) : QRE〈D,C〉
describes this computation. That is, we split the input into
two parts w = w1w2, process the first part w1 according
to f with output f(w1), process the second part w2 accord-
ing to g with output g(w2), and produce the final result
op(f(w1), g(w2)) by applying op to the intermediate results.

In order for this construction to be well-defined as a
function, every input w that matches split(f, g, op) must
be uniquely decomposable into w = w1w2 with w1 match-
ing f and w2 matching g. In other words, the rates of f and
g must be unambiguously concatenable.

The binary split construct extends naturally to more
than two arguments. For example, the ternary version
would be split(f, g, h, (x, y, z)-> op(x, y, z)).

Streaming composition. A natural operation for query
languages over streaming data is streaming composition:
given two streaming queries f and g, f� g represents the
computation in which the stream of outputs produced by f
is supplied as the input stream to g. Such a composition is
useful in setting up the query as a pipeline of several stages.
We allow the operation � to appear only at the top-level of
a query. So, a general query is a pipeline of�-free queries.
At the top level, no type checking needs to be done for the
rates, so we do not define the function R for queries f� g.

Global choice. Given queries f and g of the same type
with disjoint rates r and s, the query or(f, g) applies either f
or g to the input stream depending on which one is defined.
The rate of or(f, g) is the union rts. This choice construction
allows a case analysis based on a global regular property of
the input stream.

3.2 Derived constructs

The core language of Section 3.1 is expressive enough to
describe many common stream transformations. We present
below several derived constructs.

Matching without output. Suppose r is an unambigu-
ous symbolic regular expression over the data item type
D. The query match(r), whose rate is equal to r, does not
produce any output when it matches. This is essentially the
same as producing def as output for a match. The match
construct can be encoded as follows:

match(ϕ) , atom(ϕ, x->def)

match(r1 t r2) , or(match(r1), match(r2))

match(r1 · r2) , split(match(r1), match(r2), (x, y)->def)

match(r∗) , iter(match(r), def, (x, y)->def)

An easy induction establishes that R(match(r)) = r.
“Until” Iteration. Suppose that φ and ψ are disjoint

predicates on the input data type D, the function op : C ×
D → C is an aggregation operation, and c : C is the initial
aggregate. The query iterUntil(φ, ψ, c, op) aggregates a
sequence of data items that satisfy φ and stops when an
item that satisfies ψ is found. It is encoded as:

iterUntil(φ, ψ, c, op) , split(iter(atom(φ), c, op),
atom(ψ), (x, y)->x)

The query has type QRE〈D,C〉 and rate φ∗ · ψ.
Stream Annotation. Suppose that the input stream has

items of typeD, f is a query of type QRE〈D,C〉, and we want
to produce an output stream with items of type E in the
following way: when the query f produces an output (upon
consumption of the input stream) apply op2 : D×C → E to
the last input element and its output to get the final result,
and when the query f is undefined apply op1 : D → E
to the last input element. This computation is described
by the query annt(f, op1, op2) : QRE〈D,E〉 with rate D+.
This annotation query can be encoded using the regular
constructs of Section 3.1, but the encoding is complex and
inefficient, so we provide a custom efficient implemenation.

Tumbling windows. The term tumbling windows is
used to describe the splitting of the stream into contiguous
non-overlapping subsequences [23]. Suppose we want to
describe the streaming function that iterates f at least once
and reports the result given by f at every match. The
following query expresses this behavior:

iterLast(f) , split(match(R(f)∗), f, (x, y)-> y).

The rate of iterLast(f) is equal to R(f)+.
Efficient Sliding Windows. Suppose we want to apply

the query f : QRE〈D,A〉 to consecutive nonoverlapping
parts of the input, and efficiently aggregate the intermediate
results over a sliding window of size W . That is, the W
most recent output values of f are aggregated to produce
the final output. The aggregation is described by an initial
aggregate c : B and three functions: an insertion operation
ins : B × A → B describes how to add a new value of
type A to the aggregate (of type B), the removal operation
rmv : B×A→ B describes how to remove a value from the
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aggregate, and the finalization operation op : B → C com-
putes the final result from the aggregate. This computation
is described by the query

wnd(f,W, c, ins, rmv, op) : QRE〈D,C〉,
whose rate is equal to R(f)+. This query can be encoded
using the regular constructs of Section 3.1 and an additional
data type for FIFO queues (in order to maintain the buffer
of values of type A that are currently in the active window).

3.3 A Java Library of QREs

StreamQRE has been implemented as a Java library [2] in
order to facilitate its integration with user-defined types
and operations. The implementation covers all the core
constructs of Section 3.1, and also provides optimizations
for the derived constructs of Section 3.2 (matching without
output, “until” iteration, stream annotation, etc.).

QREs can be compiled into efficient evaluators that pro-
cess each data item in time (or memory) polynomial in the
size of the QRE and proportional to the maximum time (or
memory) needed to perform an operation on a set of cost
terms, such as addition, least-squares, etc. The operations
are selected from a set of operations defined by the user. It
is important to be aware that the choice of operations constitutes
a trade-off between expressiveness (what can be computed) and
complexity (more complicated operations cost more). See [5]
for restrictions placed on the predicates and the symbolic
regular expressions.

The declarative nature of QREs will be important when
writing complex algorithms, without having to explicitly
maintain state and low-level data flows. But as with any
new language, QREs require some care in their usage.

4 QRE IMPLEMENTATION OF A PEAK DETECTOR

We now describe the QRE program that implements the
Wavelet Peak Maxima (WPM) peak detector of Section 2.2.
The emphasis is on the fact that this algorithm can be
described in a declarative fashion using QREs, without
resorting to explicitly storing state, etc.

A numerical implementation of a Continuous Wavelet
Transform (CWT) returns a discrete set of coefficients. Let
s1 < s2 < . . . < sn be the analysis scales and let t1, t2, . . .
be the signal sampling times. Recall that a QRE views its
input as a stream of incoming data items. A data item for
WPM is d = (si, tj , |Wx(si, tj)|) ∈ D := (R+)3. We use
d.s to refer to the first component of d, and d.|Wx(s, t)| to
refers to its last component. The input stream w ∈ D∗ is
defined by the values from the spectrogram organized in a
column-by-column fashion starting from the highest scale:

w = (sn, t1, |Wx(sn, t1)|), . . . , (s1, t1, |Wx(s1, t1)|)︸ ︷︷ ︸
wt1

. . .

. . . (sn, tm, |Wx(sn, tm)|), . . . , (s1, tm, |Wx(s1, tm)|)︸ ︷︷ ︸
wtm

Let sσ , 1 ≤ σ ≤ n, the the scale that equals s̄. Since the scales
si > sσ are not relevant for peak detection (their frequency
is too low), they should be discarded from w. Now, for each
scale si, i ≤ σ, we would like to find those local maxima

of |Wx(si, ·)| that are larger than threshold pi
1. We build

the QRE peakWPM bottom-up as follows. In what follows,
i = 1, . . . , σ. See Fig. 2.

– QRE selectCoefi selects the wavelet coefficient mag-
nitude at scale si from the incoming spectrogram col-
umn wt. It must first wait for the entire colum to arrive
in a streaming fashion, so it matches n data items (recall
there are n items in a column – see Fig. 2) and returns
as cost d.|Wx(si, t)|.

selectCoefi := (dndn−1 . . . d1? di.|Wx(si, t)|)
selectCoefi :=split(match(dn−i), d, match(di−1),

(x, y, z)-> y.|Wx(si, t)|)

– QRE repeatSelectCoefi applies selectCoefi to the
latest column wt. To do so, it executes selectCoefi on
the last column, and ignores all columns that preceded
it. It returns the selected coefficient |Wx(si, t)| from the
last column.

repeatSelectCoefi := iter1(selectCoefi, 0, (x, y)->y)

– QRE localMaxi matches a string of real numbers of
length at least 3: r1...rk−2rk−1rk. It returns 1 if the value
of rk−1 is larger than rk and rk−2, and is above some
pre-defined threshold pi; otherwise, it returns 0. This
will be used to detect local maxima in the spectrogram
in a moving-window fashion. In detail:

localMaxi := wnd(atom(), 3, 0, ins, rmv, LM3)

The query localMaxi executes atom() over a sliding
window of size 3, and performs the operation LM3 over
these three values. Operation LM3 simply returns 1 if the
middle value is a local maximum that is above pi, and
returns zero, otherwise.

– The query oneMaxi feeds outputs of QRE
repeatSelectCoefi to the QRE localMaxi.

oneMaxi := repeatSelectCoefi � localMaxi

Thus, oneMaxi “sees” a string of coefficient magnitudes
|Wx(si, t1)|, |Wx(si, t2)|, . . . generated by (streaming)
repeatSelectCoefi, and produces a 1 at the times of
local maxima in this string.

– QRE peakTimesi collects the times of local maxima at
scale si into one set.

peakTimesi := oneMaxi � unionTimes

It does so by passing the string of 1s and 0s produced by
oneMaxi to unionTimes. The latter counts the number
of 0s separating the 1s and puts that in a set Mi.
Therefore, after k columns wt have been seen, set Mi

contains all local maxima at scale si which are above pi
in those k columns.

– QRE peakWPM is the final QRE. It combines results
obtained from scales sσ down to s1:

peakWPM := combine(peakTimesσ, ..., peakTimes1, connδ)

1. pσ = p̄, pi<σ = 0, since we threshold only the spectrogram
values at scale s̄. After this initial thresholding, tracing of
maxima lines returns the peaks.
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Fig. 2: QRE peakWPM

Operator connδ2 checks if the local maxima times for
each scale (produced by peakTimesi) are within a δ of
the maxima at the previous scale.

In summary, the complete QRE peakWPM is given top-down
by:

peakWPM := combine(peakTimesσ, ...,

peakTimes1, connδ)

peakTimesi := oneMaxi � unionTimes

oneMaxi := repeatSelectCoefi � localMaxi

localMaxi := wnd(atom(), 3, 0, ins, rmv, LM3)

repeatSelectCoefi := iter1(selectCoefi, 0, (x, y)-> y)

selectCoefi := split(match(dn−i), d, match(di−1),

(x, y, z)-> y.|Wx(si, t)|)

5 EXPERIMENTAL RESULTS OF PEAK DETECTOR

We show the results of running peak detector peakWPM,
described in Section 4, on a dataset of real patient elec-
trograms. For comparison purposes, we also programmed
two peak detectors in QRE: peakMDT, which is available in
a commercial ICD [30], and peakWPB (Wavelet Peaks with
Blanking), which is a simplified variant of peakWPM. For
details , see [4].

The implementation uses an early version of the
StreamQRE Java library [27]. Comparing the runtime and
memory consumption of different algorithms (including
algorithms programmed in QRE) in a consistent and reliable
manner requires running a compiled version of the program
on a particular hardware platform. No such compiler is
available at the moment, so we don’t report such perfor-
mance numbers.

The results in this section should not be interpreted as estab-
lishing the superiority of one peak detector over another, as this is
not this paper’s objective. Rather, the objective is to motivate
the use of a formal language for programming peak detec-
tors, and other tasks in ICDs. Namely, by highlighting the

2. Operator connδ can be defined recursively as follows:
connδ(X,Y ) = {y ∈ Y : ∃x ∈ X : |x − y| ≤
δ}, connδ(Xk, .., X1) = connδ(connδ(Xk, .., X2), X1)

challenges involved in peak detection for cardiac signals,
this section establishes the need for a formal understanding
of their operation on classes of arrhythmias, and thus the
need for a formal description of peak detectors.

Fig. 3 presents one rectified EGM signal of a Ventricular
Tachycardia (VT). Circles (indicating detected time of peak)
show the result of running peakWPM (red circles) and
peakWPB (black circles). These results were obtained for
s̄ = 80, BL = 150, and different values of p̄. The first setting
of p̄ (Fig. 3 (a)) for both detectors was chosen to yield the
best performance. This is akin to the way cardiologists set
the parameters of commercial ICDs: they observe the signal,
then set the parameters. We refer to this as the nominal
setting. Ground-truth is obtained by having a cardiologist
examine the signal and annotate the true peaks.

We first observe that the peaks detected by peakWPM
match the ground-truth; i.e., the nominal performance of
peakWPM yields perfect detection. This is not the case with
peakWPB. Next, one can notice that the time precision of
detected peaks with peakWPM is higher than with peakWPB.
Note also that the results of peakWPM are stable for vari-
ous parameters settings. Improper thresholds p̄ or scales s̄
degrade the results only slightly (compare locations of red
circles on Fig. 3 (a) with Fig. 3 (b)). By contrast, peakWPB
detects additional false peaks (compare black circles in
Figs. 3 (a) and (b)).

Fig. 4 (left) shows WPM (red circles) running on a
Ventricular Fibrillation (VF) rhythm, which is a potentially
fatal disorganized rhythm. Again, we note that WPM finds
the peaks.

Detector peakMDT works almost perfectly with nominal
parameters settings on any Normal Sinus Rhythm (NSR)
signal (see Fig. 4 right). NSR is the “normal” heart rhythm.
Using the same nominal parameters on more disorganized
EGM signals with higher variability in amplitude, such as
VF, does not produce good results; see the black circles in
Fig. 4 left.

6 ARRHYTHMIA DETECTION IN QRE
The outcome of peak detection is a discrete-time, uniformly-
sampled, time-stamped Boolean signal, where a 1 indicates
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Fig. 3: peakWPM-detected peaks (red circles) and peakWPB-detected peaks (black circles) on a VT rhythm.
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Fig. 4: WPM and peakMDT running on a VF rhythm (left) and peakMDT running on an NSR rhythm (right).

an electrical event (a depolarization), and a 0 indicates the
absence thereof. This signal is input to the next stage of the
ICD, which is the detection algorithm. This is an algorithm
that tries to detect whether the current rhythm is a ventricu-
lar tachycardia (which can be fatal), or not. In this section we
describe a detection algorithm used in the single-chamber
ICDs of St. Jude Medical as described in [29]3 It is represen-
tative of detection algorithms of other manufacturers which
all have similar components and functions.

All ICD detection algorithm take the form of a decision
tree, where the nodes are independent discriminators. Each
discriminator computes one particular feature of the input
boolean signal, based on which it decides how to branch in
the tree. The decision tree of the St. Jude Medical algorithm
is presented in a Figure 5; we will refer to it henceforth as
SJM. SJM is made of the following discriminators [35].

6.1 Initial Rhythm Classification

SJM first compares the current interval (time in milliseconds
between two consecutive 1s) and the running average of
the most recent four intervals to a predefined threshold of
350ms. See Figure 6.

If both these quantities are less than the threshold, the
current interval is marked as ‘Tach’. If both are slower than
the threshold, the interval is marked as ‘Sinus’. Otherwise,
it is marked as ‘Undefined’.

6.2 Sudden Onset

Sudden onset leverages the clinical observation that VT oc-
currence is usually sudden, in contrast to the gradual onset
of SVT (during which the rhythm usually accelerates gradu-
ally). The Onset discriminator quantifies the suddenness of
tachycardia onset as follows. First, it computes the 9 most
recent running average A1, . . . , A9, where each running
average is the average of 4 intervals. A9 is the most recent

3. Single-chamber ICDs only measure the signal in the right ventricle.

Initial rhythm classification No Therapy

Onset is sudden No Therapy

Rhythm is stable No Therapy

SIH ≤ thr No Therapy

Therapy

Sinus,

Undef

Tach

YES

NO

NO

YES

NO

YES

Alg

Fig. 5: St. Jude Medical discrimination algorithm

(current) average. Then it evaluates the following absolute
differences: d1 = |A9−A1|, ..., d4 = |A9−A7|. See Figure 7.
If any of these differences is greater than a physician-set
threshold, the onset is considered to be sudden. Otherwise,
the onset is gradual.

6.3 Rhythm Stability

Intervals during VT usually display low variability, a prop-
erty called ’stability’ in the medical literature. The rhythm
stability discriminator quantifies rhythm stability by com-
puting the difference between the second longest and the
second shortest intervals in the last 10 intervals. If the
difference is larger than a pre-programmed threshold, this
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Fig. 6: Evaluation of the running average and the ini-
tial rhythm classification discriminator. Running average
is evaluated over the current interval and three preceding
intervals. The threshold for the initial classification discrim-
inator is 350ms.

Fig. 7: Evaluation of the sudden onset discriminator. Thresh-
old default value is 100ms.

indicates an unstable rate. Otherwise, the rhythm is consid-
ered stable.

6.4 Sinus Interval History (SIH)

Sinus interval history prevents an inappropriate therapy in
case of stable and sudden SVT with dropped beats. SIH
records the number of ‘Sinus’-labeled intervals within a
detection window of 10 intervals. If this counter is greater
than or equal to a threshold, no therapy is delivered.

7 QRE IMPLEMENTATION OF DETECTION ALGO-
RITHM

The QRE implementation of SJM (Section 6) is divided into
four main stages. The first three stages annotate the input
stream with interval lengths, running interval averages and
rhythm labels (See section 6.1). Stage 4 computes all discrim-
inators needed for a final decision: Therapy or No Therapy.

The input to the detection algorithm is a discrete-time
boolean signal. Formally, let B = {0, 1} be the set of boolean
values. At every time t ∈ N, the detection algorithm receives
a data item s of the following form s = (V, t) ∈ D := B×N,
where V = 1 indicates there is a beat at time t, and V = 0
indicates that there is not.

We will explain now each stage in detail, and present the
precise implementation in the StreamQRE language.

Stage 1: Annotate with interval length. An interval is the
amount of time that elapses between two consecutive beats.

Thus, it is the number of 0s between consecutive 1s in the
input stream. The corresponding QRE is given by:

lincr := (x, y)->x+ 1, of type N× N→ N
intV := iterUntil(¬isV, isV, 0, lincr)

allIntV := iterLast(intV) //rate ((¬isV)∗ · isV)+

stage1 := annt(allIntV, x->x, (x, c)->x.I := c)

The query intV iterates over 0s (predicate ¬isV) until it
finds 1 (predicate isV). Each matched 0 increments the
counter (lincr), starting from initial value 0. QRE allIntV
process all consecutive intervals in the input stream by
iterating intV. The query stage1 annotates the input items
with the interval length values I calculated by the query
allIntV. The output stream s1 from this stage consists of
data items of the following form (V, t, I) ∈ D1 := B×N×N.

Stage 2: Annotate with average interval length. This
stage annotates its input stream with running average inter-
val values over a window of 4 intervals (see Figure 7):

blockV := split(match((¬isV)∗), isV, (x, y)-> y)

wndAvg := wnd(blockV, 4, 0, avg)

stage2 := annt(wndAvg, x->x, (x, c)->x.avg := c)

The query blockV matches 0∗1 and returns the last data
item that matches V = 1. Thq QRE wndAvg executes blockV
in a sliding window of length 4 and computes the average
value. The query stage2 annotates the stream with all
these sliding-window averages. The output stream s2 from
this stage consists of data items of the following form:
(V, t, I, avg) ∈ D2 := B× N× N×Q.

Stage 3: Annotate with label. This stage annotates
the stream s2 with the rhythm classification label from
S = {Tach, Sinus, Undef}. For details, see Section 6.1. The
query for computing the label is given by:

fLabel := x->

if(x.avg ≤ thr ∧ x.I ≤ thr), return Tach
elseif(x.avg > thr ∧ x.I > thr), return Sinus

else, return Undef

label := apply(iterLast(blockV), fLabel)

stage3 := annt(label, x->x, (x, c)->x.L := c)

fLabel is a basic operation to compute the label for each
data item. The query label applies fLabel to every output
of blockV (defined earlier). The query stage3 annotates
the input stream for this stage with obtained labels. The
output stream s3 from this stage consists of data items of the
following form: (V, t, I, avg, L) ∈ D3 := B× N2 ×Q× S.

Stage 4: Discriminators. This stage computes the dis-
criminators Initial Rhythm Classification, Sudden Onset,
Rhythm Stability and SIH, and combines them together
according to the discrimination algorithm from Fig. 5:

initClasf := iter1(blockV, 0, (x, y)-> y.L == Tach)

onset := wnd(blockV, 9, 0, ins, rmv, fOnset)

stability := wnd(blockV, 10, 0, ins, rmv, fStability)

sih := wnd(blockV, 10, 0, ins, rmv, fSih)

stage4 := combine(initClasf, onset, stability,

sih, (x, y, z, u)->x ∧ y ∧ z ∧ u)
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where the construct wnd describes a sliding-window com-
putation that maintains a buffer with items defined by QRE
blockV. The function ins adds a new item to the buffer,
and the function rmv removes an expiring item from the
buffer. Functions fOnset, fStability, fSih compute the
corresponding discriminators described in Section 6 using
only the items contained in the buffer. The QRE stage4
combines the defined above queries by logical operator ∧.

Overall St Jude Discrimination Algorithm. The top-
level query for St. Jude Medical discrimination algorithm is
the streaming composition of all stages:

discrStJude := stage1� stage2� stage3� stage4

8 EXPERIMENTAL RESULTS OF DISCRIMINATION
ALGORITHM

We validated that our QRE implementation of SJM indeed
follows the description in [29] in two ways4: by comparing
its output to that of a second, Matlab, implementation on
the same set of signals, and by checking that its accuracy
(defined below) is within the expected range.

First, we implemented SJM in Matlab and compared
the output of the Matlab implementation with that of
discrStJude by running them both on a database of 1920
EGM signals, described in greater details below. The two
implementations returned exactly the same decisions on
all signals. To illustrate the details of the query execution,
consider the example in Fig. 8. It shows an EGM signal
from the database with the corresponding boolean stream
generated by the peak detector. The results of running
stage1, stage2 and stage3 on this signal are shown as
INT[ms], AVG[ms] and LABEL labels streams, respectively.
All discriminators of stage4 are depicted as a red box. At
time 12, 390ms all four discriminators returned true, and
the discrimination algorithm therefore outputs Therapy.

The database of signals we used in this evaluation con-
sists of 1920 EGMs, equally divided between 960 VTs and
960 SVTs. The input stream was generated by the heart
model of [3], [22], whose outputs had been validated for
realism by cardiologists [22]. Using a heart model allows us
to generate different types of VTs and SVTs, thus exposing
the QRE implementation to a wider range of rhythms than
is possible by using a database of natural signals. It also
enables us to generate more signals for free, whereas col-
lecting EGM signals from patients is very laborious. Finally,
and specifically for the purpose of measuring the accuracy
of our implementation of SJM, the model-generated signals
we use come with the true timing of events (i.e., the boolean
stream of events is also given by the model), which allows
an accurate measure of the arrhythmia detector’s accuracy.

The second way we validated our implementation of
SJM is by running discrStJude on the database of sig-
nals and measuring its Specificity and Sensitivity, defined
respectively as

Specificity =
# correctly detected SVTs

# true SVTs
× 100%

4. Note we are not validating that the algorithm itself is ‘correct’ in
some sense. That is a separate question for future research. Our concern
here is to validate that we implemented the algorithm described in [29]
correctly.

TABLE 1: Database-averaged detection accuracy.

Sensitivity Specificity
92% 96%

(884/960) (921/960)

Sensitivity =
# correctly detected VTs

# true VTs
× 100%

Table 1 shows the results. The numbers fall within the
expected range, namely above 90% for both.

9 RELATED WORK

Signal Temporal Logic (STL) [24] is a popular specification
language employed to express real-time properties over
real-valued signals. The use of STL has been proposed in
several application domains [10] including the monitoring
of medical signals [9], [16]. In [15], STL was extended with
a signal value freeze operator enabling the specification in the
time-domain of complex oscillatory patterns (i.e., damping
oscillations). However, this extension does not allow the
detection of oscillations within a specified frequency range.

If we consider the spectrogram of a signal as a 2D map
(from time and scale to amplitude), one may think to apply
a spatial-temporal logic such as SpaTeL [21], Signal Spatio-
Temporal Logic (SSTL) [28] or STREL [8] on spectrograms.
However, their underlying spatial models, graph structures
for SSTL and STREL and quadtrees for SpaTeL, are not
suitable for this purpose.

There has been also an effort to propose logics for de-
scribing both frequency and temporal properties, including
Time-Frequency Logic (TFL) in [19] and the approach de-
scribed in [17]. However, TFL is not expressive enough for
peak detection, because it lacks the necessary mechanisms
to quantify over variables or to freeze their values.

Timed regular expressions [7], [32], [33] extend regular
expressions by clocks and are expressively equivalent to
timed automata, but they are insufficient to specify the
tasks described in this paper. The work proposed in [20]
on measuring signals with timed patterns does not improve
the situation for our case study, since it does not provide,
neither in the specification nor in the measurement, the
notion of local minima/maxima that is fundamental for
peak detection. Furthermore, the operator of measure is
separated by the specification of the pattern to match.

Stream runtime verification languages (SRVs) [14], [18],
such as LOLA [18], require explicit encoding of all the
relations between input and output streams. This would
result in a very cumbersome activity while encoding the
complex tasks of this paper. Moreover, unlike Boolean
SRVs [14], QREs allow multiple unrestricted data types in
the intermediary computations.

10 CONCLUSIONS AND FUTURE WORK

The tasks of discrimination and peak detection, fundamen-
tal to arrhythmia-discrimination algorithms, are easily and
succinctly expressible in QREs. One obvious limitation of
QREs is that they only allow regular matching, though this
is somewhat mitigated by the ability to chain QREs (though
the streaming combinator �) to achieve more complex
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Fig. 8: Boolean signal obtained from the EGM signal and the streaming output of QRE implementation of St Jude
Discrimination algorithm presented in Sections 6-7.

tasks. One advantage of programming in QREs is that
it automatically provides us with a base implementation,
whose time and memory complexity is independent of the
stream length.

As future work, it will be interesting to compile a QRE
into C or assembly code to measure and compare actual
performance on a given hardware platform. Also, just like
an RE has an equivalent machine model (DFA), a QRE has
an equivalent machine model in terms of a deterministic
finite-state transducer [5]. This points to an analysis of a
QRE’s correctness and efficiency beyond testing.
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