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Abstract— Robustness-Guided Falsification (RGF) is an effi-
cient testing technique that tries to find a system execution that
violates some formal specification, by minimizing the robustness
of the specification over the set of initial conditions of the
system. Robustness uses an underlying distance function on
the space of system executions. As RGF is applied to new fields
like medicine, it is essential to determine whether our distances
still capture the domain expert’s intuition of which executions
are similar and which are not. Motivated by the problem of
testing the algorithms of cardiac defibrillators implanted in
millions of patients worldwide, this work develops a (pseudo-
)distance function, called conformance, over the space of cardiac
signals. By using it to distinguish between fatal and non-fatal
arrhythmias obtained from real patients, it is demonstrated
that conformance measures the meaningful distance between
cardiac signals much better than distances used in medical
devices today. Next, conformance is used to re-define the
robustness degrees of Metric Temporal Logic (MTL), and it
is shown that conformance-based robust semantics of MTL
can bound the (conformance-based) robustness degree, thus
enabling a principled application of RGF to problems in the
cardiac domain, using the appropriate distance notion. Using
existing robust semantics based on sup norm can yield incorrect
conclusions, with potentially severe consequences to patients.

I. INTRODUCTION

When a system’s performance is evaluated quantitatively,
it is almost always necessary to measure the distance, or dis-
similarity, between two different executions of the system1.
For example, various quantitative semantics for Metric and
Signal Temporal Logic (MTL/STL) use, as a basic construct,
a metric over the signal space. The most basic requirement
from a distance function d is that if d(x, y) > d(x, z) for
signals x, y, z, then this correlates positively with a domain
expert’s judgement that signal x is more similar to z than
it is to y. As we seek to apply formal and quantitative
methods to new disciplines that are ever further from the
originating disciplines of these methods, it is essential that
we revisit fundamental constructs, like distance between sig-
nals, to guarantee that they still capture the domain expert’s
judgment. If they do not, then when system performance is
optimized, the optimization might fail to converge, or worse,
it might converge to a wrong optimizer.

This work defines an appropriate distance function, and
derives its consequences for robust semantics, in the field
of cardiac electrophysiology. This is the branch of medicine
that treats disturbances in the electrical activity of the hu-
man heart leading to Sudden Cardiac Arrest, the leading
cause of death worldwide. Our overall objective is to apply

1Throughout this paper, ‘distance’ is used colloquially, and does not
necessarily refer to the mathematical notion of distance. The word ‘metric’
is used for the latter.

robustness-guided falsification [20] to the task of finding fatal
rhythms, and the cardiac conditions that produce them. The
basic object in this domain is the electrogram signal, the
voltage signal generated by the heart as it beats. To accom-
plish this overall objective, this work focuses on defining
the appropriate distance between electrograms, and defining
the corresponding notion of robustness and establishing
its properties. We introduce conformance (Section II) and
demonstrate, by testing on real patient data, that it is a supe-
rior measure of distance between electrograms than distances
currently used in cardiac defibrillators (Section III). This
result is also of independent interest, as conformance can
be used in defibrillators to reduce the risk of inappropriate
high-energy electric shocks being delivered to the patient [1].

We then re-derive the (temporal and spatial) robust seman-
tics of MTL based on conformance, rather than the sup norm
(Section IV). It is shown that even though conformance is
not a metric, the conformance-based semantics approximate
the (conformance-based) robustness degree, thus enabling the
usage of successful robustness-guided falsification methods
to electrophysiology problems. This is important because,
despite recent progress [2], realistic heart models are still
too complex for exhaustive verification, leaving falsification
and testing as the only avenues for device verification. This
result is also of independent and general interest, since it
demonstrates that the robustness of MTL formulas is remark-
ably resilient to generic bounded measurement errors over
the signals. Two examples illustrate these results (Section V).

II. EVALUATING DISTANCE MEASURES ON PATIENT DATA

An intracardiac electrogram (EGM) signal is the voltage
signal generated by the heart as it beats, measured by a lead
implanted in the cardiac muscle. It is composed of a sequence
of depolarizations, as shown in Fig. 1 (a). Electrograms
are noisy, non-parametric and highly variable across patients
and within a patient over time. We will first describe the
proposed distance over EGM space, then establish that it is
more suitable for the task of finding fatal arrhythmias.

Notation. Let N be the set of non-negative integers, R be
the set of real numbers, R+ = [0,∞). The Euclidian norm
is denoted by | · |, in a vector space that is clear from the
context. Given a real-valued function f defined on some set
S, by convention, infs∈∅ f(s) =∞ and sups∈∅ f(s) = −∞.
Given two sets, A and B, AB is the set of all functions
from B to A. A time domain is either a real interval (e.g.,
T = [0, 5)), an integer interval (e.g., T = {0, . . . , 5}) or a
compact hybrid time domain (T = ∪Jj=0[tj , tj+1] × {j} ⊂
R+ × N) [23]. Let X ⊂ Rn be the bounded state-space. A



signal is a function x : T→ X . The value of x at time t is
denoted by xt. The sup norm between signals x and y with
a common domain T is d∞(x,y) := supt∈T |xt − yt|. We
write domx for the domain of x. Given two reals a and b,
a t b is their maximum and a u b is their minimum.

A. Conformance as a distance measure
The proposed distance, introduced in [4] for discrete-time

signals, is now defined.

Definition II.1. Given two signals x and y in XT, t ∈ T,
and given a positive real τ > 0, the τ -degree of conformance
between x and y, ρτ (x,y), is given by:
−→
d τ (x,y, t) := inf

s∈T:|t−s|<τ
|xt − ys|,

dτ (x,y, t) :=
−→
d τ (x,y, t) t

−→
d τ (y,x, t) (1)

ρτ (x,y) := sup
t∈T

dτ (x,y, t)

In words, function
−→
d τ matches each point of x with the

nearest point on y that is within some τ of it. By contrast, the
sup and Lp norms, both commonly used, only measure the
distance at the same point in time. This is inappropriate in
many scenarios where the signals are not sampled exactly at
the same time, or when one signal has a (possibly variable)
delay relative to the other, or noise is present. The price we
pay for the generality provided by ρτ is that it does not
separate points (i.e., we can have ρτ (x,y) = 0 but x 6= y)
and does not respect the triangle inequality.

B. Morphology discriminators in ICDs
To establish conformance as a suitable distance measure

over EGM space, we compare its success rate in discrim-
inating between two classes of cardiac rhythms to that
of two other distances used in Implantable Cardioverter
Defibrillators (ICDs) today [17]. A word about ICDs is first
in order. An ICD is a life-saving cardiac device, indicated
for the treatment of tachycardias, which are abnormally
fast cardiac rhythms. Over 300,000 patients received a new
ICD in 2009 alone [27], with 10,000 new patients every
month. The main task of an ICD is to distinguish between
potentially fatal Ventricular Tachycardias (VTs), which orig-
inate in the ventricles (lower chambers of the heart) and
require an electric shock to terminate them, and usually non-
fatal SupraVentricular Tachycardias (SVTs), which originate
above the ventricles and can be left to self-terminate. One of
the VT/SVT discriminators used in an ICD is a morphology
discriminator (MD), which analyzes the morphologies (i.e.,
shapes) of depolarizations. An MD operates as follows.
• A single template depolarization yT is recorded by the

ICD during normal sinus rhythm (NSR). This represents the
normal shape of the depolarization during regular conduction
from the atria to the ventricles. See Fig. 1 (b).
• The observed signal is partitioned into single depolar-

ization by what is called a sensing algorithm.
• A distance function d takes in the current depolarization

x and the template depolarization yT and returns a scalar
value d(x,yT ) quantifying how different they are.
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Fig. 1. (a) EGM signal with a rectangle around one depolarization. (b)
Shapes (a.k.a. morphologies) of a single depolarization during an electrical
propagation that is supraventricular in origin (top) and ventricular in origin
(bottom). The NSR template (green) is a typical depolarization morphology
recorded during normal rhythm. The amount of difference between NSR
template and current depolarization (red) is used by the ICD to determine
the origin of the rhythm.

• If d(x,yT ) is less than some pre-set threshold α ≥
0, then the two depolarizations are said to match, and
the current depolarization is determined to come from a
supraventricular rhythm. Otherwise the current depolariza-
tion is determined to come from a ventricular rhythm.

We compare the performance of a conformance-based MD
to that of two MDs in major-manufacturer ICDs. The first
is the Wavelet MD described in [26], [10], and we denote
its distance function dW . The second is Vector Timing and
Correlation (VTC) as described in [8], and we denote its
distance function dV TC . Due to lack of space, we refer the
reader to the references for details.

C. Comparing the discriminators

Because the performance of the three discriminators, and
underlying distances, depends on the α thresholds chosen,
and these thresholds are programmable in practice and not
fixed, we will compare them for a range of thresholds. In
what follows the comparison setup is detailed.

A cardiologist has labeled a database of 176 EGM signals
from 22 patients, of various durations and displaying dif-
ferent rhythms (NSR, VT, SVT). This number of patients
is common in early feasibility studies. The signals were
collected in the electrophysiology lab. The patients are all
male, with mean age 61 and standard deviation 15 years.
For each patient, an NSR template yT is acquired from an
NSR signal. Each remaining signal is then partitioned into
individual depolarizations. The distance d(xk,yT ) between
the kth depolarization xk and the template yT is recorded,



where d is one of ρτ , dW or dV TC . This yields a vector
∆ = (δ1, . . . , δp) of distance values for each patient (The
database has a few hundred depolarizations per patient).

For a given distance function, the threshold α can be in
a given range A = [α, α]. E.g. the percentage match of
WaveletMD is chosen from [0, 1]×100%. Therefore, for each
distance function and for each value α ∈ A, the distance
values in ∆ are thresholded. If a given depolarization x is
a true SVT (because it comes from an SVT signal), and
d(x,yT ) ≤ α, this is a correct classification. Otherwise, it’s
an incorrect classification. Analogously, if a given depolar-
ization is a true VT (because it comes from a VT record), it
is correctly classified iff d(x,yT ) > α.

The sensitivity and specificity of a discriminator at level α
are defined as

Sensitivityα =
Nb. of correctly classified VT depolarizations

Total nb of VT depolarizations

Specificityα =
Nb. of correctly classified SVT depolarizations

Total nb of SVT depolarizations

By varying α and plotting the points (Specificityα,
Sensitivityα), we obtain the Sensitivity vs. Specificity curve
(SSC). A discriminator performs better if its SSC lies above
that of other discriminators: this means that for a given
specificity, it achieves a higher sensitivity, and vice-versa.

Choice of τ . The parameter τ needs to be set by the
domain experts. Conceivably, it could be optimized over a
training set to achieve a desired point on the SSC curve.

III. RESULTS

The results are shown in Fig. 2(a). We first note that
the conformance SSC lies above that of the other two
discriminators, clearly indicating it uses a better distance
function than those two. Moreover, the conformance-based
MD is minimally affected by the sensing algorithm, which
is another sign of its robustness. Next, note that a 100%
sensitivity was achieved by the conformance distance func-
tion, for all patients, over a wide range of threshold values.
This is crucial, since anything less than 100% means that
some true, potentially fatal, VT rhythms are missed. Thus in
the rest of the results, we may restrict our attention to the
threshold values where sensitivity is above 95%.

For each patient, we measured which MDs gave the
highest specificity at sensitivity values above 95%. These are
the MDs that performed best for this patient. Conformance
achieved highest specificity for 13 out of 22 patients, VTC
achieved it for 12 patients, and Wavelet for 6 patients. Thus
conformance is best for a larger number of patients in this
cohort. The first row of Table I summarizes these results.

For those patients where conformance did better, the av-
erage relative improvement in specificity over either VTC or
WaveletMD was 6.6% (with maximum improvement 18.1%).

Robustness to sensing errors. To study the algorithms’
robustness to sensing errors, we re-ran the above experi-
ments, but this time we systematically shifted the individual
depolarizations by 5% and 8% of their window length, to
model poor partitioning of individual depolarizations, which
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(a) SSC without induced sensing errors.
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Fig. 2. Sensitivity vs. Specificity from all patients and signals combined.
For conformance-based MD, two curves are shown, corresponding to two
different sensing algorithms (ways of partitioning the signal into individual
depolarizations). (Colors in on-line version)

TABLE I
NUMBER OF PATIENTS (OUT OF 22) FOR WHICH A GIVEN DISTANCE

FUNCTION ACHIEVED THE HIGHEST SPECIFICITY. THE SECOND AND

THIRD COLUMNS SHOW CONFORMANCE-BASED MDS USING DIFFERENT

SENSING ALGORITHMS.

Sensing Error Conformance Conformance VTC WaveletMD
WAV Sensing VTC Sensing

0% 12 13 12 6
5% 15 14 6 5
8% 18 17 3 2

in turn yields an artificially large distance value. The results
are shown in Fig. 2(b). The second and third rows of Table I
give the number of patients for which the given distance
function produced the highest specificity at a sensitivity
above 95%. Here too, conformance does better, especially
at higher levels of errors. Moreover, the relative increase
in specificity of conformance over VTC is now 232%, and
over WaveletMD is 188%. Thus, this study establishes that
conformance is a more meaningful measure of distance
between EGM signals for the purposes of comparing VT
and SVT rhythms.



IV. ROBUST MTL SEMANTICS BASED ON CONFORMANCE

We now turn to the problem of extending robustness-
guided falsification (RGF) methods [5], [15] to domains
where conformance is the appropriate notion of distance. The
main novelty here is that conformance is not a metric: it does
not respect the triangle inequality and it does not separate
points. All proofs are in the technical report [3].

A. Preliminaries on signal convergence and MTL

We will need a few definitions, which we lift from [18].
Let A be a topological space and Y ⊂ A a subset of A.
Let Y denote the closure of Y . Let f : A × A → R+ be a
function. Then we define the following derived functions:

distf (x, Y ) := inf
y∈Y

f(x, y)

depthf (x, Y ) := distf (x,A \ Y ) (2)

Distf (x, Y ) :=

{
−distf (x, Y ), x /∈ Y
depthf (x, Y ), x ∈ Y

For example, if A = X is the state space and f(x, y) =
|x− y| is the Euclidian distance between points in X , then
the above define, respectively, the distance of a point to a
subset Y ⊂ X , the depth of a point in a set, and the signed
distance of a point to a set (with positive value indicating the
point x is in Y , and a negative value indicating otherwise).

In this paper, we use the notion of graphical convergence
between signals, since it builds on conformance as the
underlying notion of distance between signals, and captures
convergence of signals not necessarily supported on the same
domain. See [6] for the definition of set convergence.

Definition IV.1 (Graphical convergence [23]). Given a signal
y ∈ XT, its graph is the set gphy := {(t, yt) | t ∈ domy}.
A sequence of signals (yi) is said to converge graphically
to a signal y if the sequence of sets {gphyi}i converges to
the set gphy in the sense of set convergence. We denote this
by yi

G→ y.
1) Metric Temporal Logic and its robust semantics:

Metric Temporal Logic (MTL) is a formal language for ex-
pressing high-level properties of signals, such as “whenever
the signal exceeds the value 500, it eventually goes below
450 within 5 minutes”. Formally, let AP be a set of atomic
propositions. The syntax of MTL formulae is given by

ϕ := >| p ∈ AP | ¬ϕ| ϕ1 ∨ ϕ2| ϕ1UIϕ2

Here, ¬,∨,∧ are the boolean connectives Not, Or and And,
UI is the timed Until operator, and I ⊂ T is an interval in
T. We write ⊥ = ¬>, t + I = {t + a | a ∈ I}. In all that
follows, we will assume, without loss of generality, that AP
contains p iff it contains its negation ¬p.

Let O : AP → P(X) be a function that maps atomic
propositions to the subsets of the state space that satisfy
them. The boolean semantics of MTL formulae map a
formula to {>,⊥} as follows.

Definition IV.2 (Boolean semantics).

∀p ∈ AP, �p,O� (x, t) ⇔ xt ∈ O(p)
�¬ϕ,O� (x, t) ⇔ ¬ �ϕ,O�

�ϕ1 ∨ ϕ2,O� (x, t) ⇔ �ϕ1,O� ∨ �ϕ2,O�
�ϕ1UIϕ2,O� (x, t) ⇔ ∃t′ ∈ t+ I ∩ T .�ϕ2,O� (x, t′)

∧∀t′′ ∈ [t, t′)�ϕ1,O� (x, t′′)

If� ϕ,O � (x, t) = >, we write (x, t) |= ϕ. Informally,
ϕ1UIϕ2 says that at some point in t + I , ϕ2 holds, and at
every moment between now (t) and then, ϕ1 holds. The other
connectives have their usual boolean meaning.

The robust semantics of MTL how robustly x satisfies
(or falsifies) ϕ. Let ρ : XT ×XT → R+ be the sup metric,
ρ(x,y) = supt∈T |xt − yt|. Let Lt(ϕ) ⊂ XT be the set of
signals that satisfy ϕ starting at time t ∈ T, that is, Lt(ϕ) =
{x ∈ XT | (x, t) |= ϕ}.

Definition IV.3 ((Spatial) Robustness degree [19]). The
robustness degree of the MTL formula ϕ relative to x starting
at t is defined as Distρ(x,Lt(ϕ)).

Thus the robustness degree provides a precise sense for
how much disturbance a signal can tolerate while still
satisfying (or falsifying) the specification:

Theorem IV.1 ([19]). Let x ∈ XT. For every y ∈ XT

s.t. ρ(x,y) < Distρ(x,Lt(ϕ)), it holds that � ϕ,O �
(x, t) =�ϕ,O� (y, t).

The robustness degree cannot be directly computed be-
cause Lt(ϕ) cannot be conveniently characterized. The ro-
bust semantics of MTL formulae provide a way to approxi-
mate the robustness degree by performing simple computa-
tions on the signal x itself. Let d : X×X → R+ be a metric
defined on X .

Definition IV.4 ((Spatial) Robust semantics).

J>,OK(x, t) = +∞
∀p ∈ AP, Jp,OK(x, t) = Distd(xt,O(p))

J¬ϕ,OK(x, t) = −Jϕ,OK(x, t)
Jϕ1 ∨ ϕ2,OK(x, t) = Jϕ1,OK(x, t) ∨ Jϕ2,OK(x, t)
Jϕ1 ∧ ϕ2,OK(x, t) = Jϕ1,OK(x, t) ∧ Jϕ2,OK(x, t)

Jϕ1UIϕ2,OK(x, t) = tt′∈t+TI

(
Jϕ2,OK(x, t′)

l

ut′′∈[t,t′)Jϕ1,OK(x, t′′)
)

The main property of the robust semantics, which justifies
its usefulness, is captured in the following theorem:

Theorem IV.2 ([19]). For any MTL formula ϕ, signal x ∈
XT, time t ∈ T and map O, it holds that

−distρ(x,Lt(ϕ)) ≤ Jϕ,OK(x, t) ≤ depthρ(x,Lt(ϕ))

Thus if Jϕ,OK(x, t) > 0, then depthρ(x,Lt(ϕ)) > 0
and (x, t) |= ϕ. On the other hand, if Jϕ,OK(x, t) < 0, then
(x, t) 6|= ϕ. Putting the two sides of the inequality together
it holds that

|Jϕ,OK(x, t)| ≤ |Distρ(x,Lt(ϕ))| (3)



Robustness-Guided Falsification [20] searches for sys-
tem executions x that falsify ϕ by minimizing Jϕ,OK(x, t)
over the (deterministic) system’s initial conditions. If a
negative robustness is found, then the trace with the negative
robustness witnesses a falsification.

B. Robust MTL semantics using conformance

We now show that if we substitute our conformance
distance ρτ for the metric ρ in defining the robust semantics,
then the conclusions of Thms. IV.1 and IV.2 still hold.

Definition IV.5. Fix τ > 0. Let S be a subset of X , x ∈ XT

be a signal defined on T, and let t ∈ T. The point-to-set
distance is given by

psdτ (x, t, S) := inf
y∈S

inf
s:|s−t|≤τ

|xs − y| (4)

Two things are noteworthy about the distances in (1) and
(4). First, is that dτ is only defined for points in X that are
on some trajectories x and y. It is not defined everywhere
on X . Secondly, the point-to-set distance psd is not defined
using dτ : indeed the set S is an arbitrary subset of X .

We define the conformance-based robustness degree to be
Distρτ (x,Lt(ϕ)) (recall the definitions in (2)). The next
result shows that the conclusion of Thm. IV.1 still holds.
The proof is immediate and we skip it.

Theorem IV.3. Let x ∈ XT. For any signal y ∈ XT

s.t. ρτ (x,y) < Distρτ (x,Lt(ϕ)), it holds that � ϕ,O�
(x, t) =�ϕ,O� (y, t).

As before, Distρτ (x,Lt(ϕ)) cannot be computed. There-
fore we define the robust semantics as before, only now using
the weaker notion of dissimilarity ρτ between signals.

Definition IV.6 (Conformance robust semantics).

J>,OKρτ (x, t) = +∞

∀p ∈ AP, Jp,OKρτ (x, t) =

{
psdτ (x, t,X \ O(p)), if x ∈ O(p)
−psdτ (x, t,O(p)), if x /∈ O(p)

J¬ϕ,OKρτ (x, t) = −Jϕ,OKρτ (x, t)
Jϕ1 ∨ ϕ2,OKρτ (x, t) = Jϕ1,OKρτ (x, t) t Jϕ2,OKρτ (x, t)
Jϕ1UIϕ2,OKρτ (x, t) = tt′∈t+TI

(
Jϕ2,OKρτ (x, t

′)
l
ut′′∈[t,t′)Jϕ1,OKρτ (x, t

′′)
)

The next result shows that the robust semantics founded
on conformance maintain the desirable property of approx-
imating the robustness degree founded on conformance. It
allows us to use the machinery of RGF to search over a
heart model’s parameters to find fatal arrhythmic behavior, by
minimizing the robustness of the output EGM signals relative
to a specification describing the arrhythmia of interest.

Theorem IV.4. For any MTL formula ϕ, signal x ∈ XT,
time t ∈ T and map O, it holds that

−distρτ (x,Lt(ϕ)) ≤ Jϕ,OKρτ (x, t) ≤ depthρτ (x,Lt(ϕ))
(5)

This theorem also allows us to use the same efficient
dynamic programming algorithm used in [14] to monitor the

new semantics. The following theorem relates conformance-
based and sup norm-based robust semantics from Def. IV.4.

Theorem IV.5. 1. For any signal x and formula ϕ, the
following inequality holds, and it is tight.

|Jϕ,OKρτ (x, t)| ≤ |Jϕ,OK(x, t)|

2. Let S be a subset of signals sharing the same domain
T and which are continuous on T. Then as τ → 0, ρτ → ρ
on S and Jϕ,OKρτ (x, t)→ Jϕ,OK(x, t) for any x ∈ S.

C. Conformance-based temporal robustness

In [16] another robust semantics was introduced, which
quantifies how much to shift the signal in time in order to
change its truth value relative to a specification ϕ. Let J·, ·Kχ
denote the sup norm-based temporal semantics introduced
in [16]. We may also define a temporal conformance distance
by a natural adaptation of the above definitions. The resulting
robust semantics generalize the usual J·, ·Kχ, much in the
same way that Jϕ,OKρτ generalizes Jϕ,OK (Thm. IV.5).

Specifically, given ε > 0, for every 2 signals x,y ∈
XT define the time shift function −→u ε(x,y, t) = inf{τ >
0 | infs:|s−t|<τ |xt − ys| < ε}, and χε(x,y) =
supt∈T(−→u ε(x,y, t) t −→u ε(y,x, t)). Given a set S ⊂ X , de-
fine psdtε(x, t, S) = inf{τ > 0 | infs:|s−t|<τ,y∈S |xs−y| <
ε}. We can now define temporal robustness, J·, ·Kχε using
Def. IV.6 but using psdtε instead of psdτ . The following is
the temporal equivalent of Thm. IV.5, with a similar proof
using χε instead of dτ .

Theorem IV.6. For every ε > 0, formula ϕ, signal x ∈ XT

and t ∈ T, Jϕ,OKχε ≤ Jϕ,OKχ

V. ILLUSTRATIVE EXAMPLES

Keeping within the focus of this paper, we will now
illustrate Thm. IV.5. The characterization of an SVT signal
is complex, and patient-specific. The following two formulas
offer a partial characterization. Let θ > 0 and a < b < c <
d < e < f , g < g′ < h. The operator � is ‘Always’ and 3

means ‘Eventually’. Both are derived from U .

ϕrate = �[0,T ]((�[a,b]x > θ) =⇒
(
3[b,c]x ≤ θ

)
∧
(
3[d,e](�[0,f ]x > θ)

)
ϕwidth = �[0,T ]((x < θ ∧3[g,g′]x > θ) =⇒ �[g′,h]x > θ)

ϕrate establishes bounds on the rhythm’s rate, which is
one of the most important features of a heart rhythm.2 ϕwidth
places a minimum on the width of the main deflection of the
signal, which is an indirect measurement of signal propaga-
tion speed in the heart. We measured the conformance-based
semantics and usual sup norm-based semantics of these two
formulas with respect to a cardiac signal x with quasi-period
800ms. For τ = 5ms, the results were

Jϕwidth,OKρτ (x, 0) = 0.6621 < Jϕwidth,OK(x, 0) = 1.2441

2From a theoretical perspective, rate might be better tackled in the
frequency domain. But cardiac implantable devices avoid or greatly simplify
frequency transformations to reduce energy consumption and delays.



Jϕrate,OKρτ (x, 0) = 0.4377 < Jϕrate,OK(x, 0) = 1.6814

Even though 5ms is a small window relative to the signal
quasi-period of 800ms, the difference between the appropri-
ate, conformance-based semantics, and the sup norm-based
semantics, is significant. If the latter are used in robustness-
guided falsification, then a large minimum robustness might
be concealing what is actually non-robust behavior. This
highlights the necessity of using the appropriate distance and
associated semantics.

If τ = 0 (which we can do in experiments since the signals
are sampled at the same rate), the robustness values Jϕ,OKρτ
and Jϕ,OKρ are equal as predicted.

VI. RELATED WORK

Conformance was introduced in [4], based on [23], as
a distance between the executions of hybrid systems, that
relaxes both temporal and spatial matching constraints. A
number of closeness measures between hybrid trajectories
and systems exist. Measures based on bisimulation [21] and
supnorms [9] only consider the differences in signal values
at the same moment in time. Other closeness measures,
conversely, consider only differences in trajectories’ timing,
e.g., [24]. The Skorokhod metric used in [11], [13] and
generalized in [12] measures the norm of the retiming needed
to make two signals match, and it is not clear how this
can be leveraged to define a point-to-set distance in our
context. See [7] for issues relating to learning domain-
appropriate pseudo-metrics. The weighted edit distance was
used to define quantitative semantics for STL in [25] but it
only applies to finite-length, finite-range signals, which are
unnecessary restrictions is necessary in our setup.

VII. CONCLUSION

The application of systems methods to the medical and
biological fields must take into account the specific character
of the new types of signals in these fields. In cardiac
electrophysiology, electrograms are complex, noisy, non-
parametric and highly variable across patients and within
a patient over time. We have shown that in the task of
arrhythmia discrimination, conformance is the suitable dis-
tance over electrogram space. Despite it not being nearly as
well-behaved as a metric, we showed that robustness-guided
falsification can still be applied in a principled manner, and
that using the usual sup norm-based robustness yields false
and misleading results. Moving forward, we will develop a
heart model that allows us to search its parameter space for
arrhythmias and test it in-the-loop with a defibrillator.
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APPENDIX

PROOF OF THM. IV.4

For the proof we will need the following lemma.

Lemma .1. Given signals x and y, and a set of signals
S. Let S be the closure of S, that is, S = S ∪ ∂S where
∂S = {z ∈ XT | ∃(zi) : zi

G→ z}. Then infy∈S ρτ (x,y) =
infy∈S ρτ (x,y).

Proof. Write r = ρτ (x,y). We establish that
infy∈S ρτ (x,y) ≤ infy∈S ρτ (x,y), the other direction
being immediate. Now let (yi) ∈ S be a sequence
of signals that converges graphically to y. Since
infy∈S ρτ (x,y) ≤ lim infi→∞ ρτ (x,yi)3, it suffices to
show that

lim inf
i→∞

ρτ (x,yi) ≤ ρτ (x,y) (6)

This yields the desired inequality by taking the inf on both
sides.

Assume (6) to not hold for a contradiction. Then there
exists an i0 ∈ N and a δ > 0 s.t. ρτ (x,yi) ≥ r + δ for all
i > i0. For every xt, there exists ys(t) s.t. |t − s(t)| < τ
and |xt − ys(t)| ≤ r. Define a = inft∈T min(|s(t) − (t −
τ)|, |s(t) − (t + τ)|): this is the closest that the matching
time s(t) gets to the ends of the interval [t− τ, t+ τ ]. Since
the domains of our signals are bounded and |s(t) − t| < τ ,
it holds that a > 0. Similarly, for every s ∈ domy there
exists a t(s) ∈ domx s.t. |s− t(s)| < τ and |xt(s)− ys| ≤ r.
Define b = inft∈T min(|t(s)− (s− τ)|, |t(s)− (s+ τ)|): this
is the closest that the matching time t(s) gets to the ends
of the interval [s − τ, s + τ ]. It also holds that b > 0. Let
ω = min(δ/2, τ, a/2, b/2) > 0. Now recall that yi converges
to y graphically, so by [22, Thm. 5.25] there exists an integer
i1 > i0 s.t. for all i > i1, the following holds: for every ys(t)
there exists yis′ s.t. |s(t) − s′| < ω and |ys(t) − yis′ | < ω.
This implies that for all i > i1

|t− s′| ≤ |t− s(t)|+ |s(t)− s′| ≤ τ − a+ a/2 < τ

and |xt − yis′ | ≤ |xt − ys(t)|+ |ys(t) − yis′ | < r + δ/2 (7)

Conversely, [22, Thm. 5.25] also implies that for every
s′ ∈ domyi, there exists s ∈ domy s.t. |s − s′| < ω and
|ys − yis′ | < ω. There also exists t ∈ domx s.t. |t − s| < τ
and |xt − ys| ≤ r. This implies that

|t− s′| ≤ τ − b+ b/2 < τ and |xt − yis′ | < r + δ/2 (8)

Putting (7) and (8) together yields ρτ (x,yi) < r+δ/2 for
every i > i1, a contradiction. This concludes the proof.

We now proceed with the proof of Thm. IV.4. We give
the proof for the base cases. The other cases follow by

3We haven’t shown continuity of ρτ so even though yi converges to y, ρτ
may have several accumulation points at the convergence point y, whence
the use of lim inf . The inequality can be readily shown by contradiction:
assume a := lim inf f(xi) < f∗ := infx∈S f(x) and use the definition
of accumulation point: ∀ε > 0, ∀i0, ∃i > i0 . |f(xi)− a| < ε.

structural induction on ϕ along the lines of the proofs in
[19] with some simple modifications. Recall our assumption
that p ∈ AP iff ¬p ∈ AP , without loss of generality.

Case 1: ϕ = > . Then Lt(ϕ) = XT for any t so
depthρτ (x,Lt(ϕ)) = distρτ (x, ∅) = ∞ by convention.
Also, −distρτ (x, XT) = 0 so this case holds.

Case 2: ϕ = p ∈ AP .
Case 1.1: x ∈ Lt(p). Distρτ (x,Lt(p)) =

depthρτ (x,Lt(p)) = distρτ (x, XT \ Lt(p)) =
inf

y∈XT\Lt(p) ρτ (x,y) = infy∈XT\Lt(p) ρτ (x,y)

(by Lemma .1) = infy∈Lt(¬p) ρτ (x,y) =
infy∈Lt(¬p)

[
supt′ 6=t dτ (xt′ , yt′) t dτ (xt, yt)

]
.

Intuitively, only the value of y around t should matter.
Indeed, for any z ∈ Lt(¬p) s.t.

sup
t′ 6=t

dτ (xt′ , zt′) > dτ (xt, zt) (9)

we can build a z′ ∈ Lt(¬p) s.t. z′(t′) = x(t′) for all
t′ 6= t and z′(t) = z(t). Then ρτ (x, z′) = dτ (x, z, t) <
supt′ 6=t dτ (x, z, t′) ≤ ρτ (x, z). So we may restrict our
attention to signals y ∈ Lt(¬p) for which (9) does not hold.
So depthρτ (x,Lt(p)) equals

inf
y∈Lt(¬p)

[
sup
t′ 6=t

dτ (x,y, t′) t dτ (x,y, t)

]
= inf

y∈Lt(¬p)
dτ (x,y, t)

≥ inf
y∈Lt(¬p)

−→
d τ (x,y, t) t inf

y∈Lt(¬p)

−→
d τ (x,y, t)

Now note that as y spans Lt(¬p), ys 6=t spans all of Xso
for any s ∈ T s.t. |s − t| ≤ τ , there exists ỹ ∈ Lt(¬p) s.t.
ỹs = xt, and it follows that

inf
y∈Lt(¬p)

−→
d τ (x,y, t) = inf

y∈Lt(¬p)
inf

s:|s−t|≤τ
|xt − ys| = 0

On the other hand, as y spans Lt(¬p), yt spans all of
X \ O(p). Therefore

inf
y∈Lt(¬p)

−→
d τ (y,x, t)

= inf
y∈Lt(¬p)

inf
s:|s−t|≤τ

|yt − xs|

= inf
ȳ∈X\O(p)

inf
s:|s−t|≤τ

|xs − ȳ|

= psdτ (x, t,X \ O(p))

= Jp,OKρτ (x, t) ≥ 0

It comes that depthρτ (x,Lt(p)) ≥ 0 t Jp,OKρτ (x, t) =
Jp,OKρτ (x, t).

For the other side of the inequality, we note that
distρτ (x,Lt(p)) = infy∈Lt(p) ρτ (x,y) = 0 since x ∈
Lt(p).

Case 1.2: x /∈ Lt(p). Define p′ = ¬p ∈ AP . Then by
previous case, 0 ≤ Jp′,OKρτ (x, t) ≤ depthρτ (x,Lt(p′)),
which is equivalent to

−depthρτ (x,Lt(p)) ≤ −Jp′,OKρτ (x, t) = Jp,OKρτ (x, t) ≤ 0



Now depthρτ (x,Lt(p)) = 0 and depthρτ (x,Lt(p′)) =
distρτ (x,Lt(p)). This concludes this case.

Case 2: ϕ = ¬ϕ1 . By the induction hypothesis,

−distρτ (x,Lt(ϕ1)) ≤ Jϕ1,OKρτ (x, t) ≤ depthρτ (x,Lt(ϕ1))

−depthρτ (x,Lt(ϕ1)) ≤ Jϕ1,OKρτ (x, t) ≤ distρτ (x,Lt(ϕ1))

Now −depthρτ (x,Lt(ϕ1)) = −distρτ (x, XT \ Lt(ϕ1)) =
−distρτ (x,Lt(¬ϕ1)) = −distρτ (x,Lt(ϕ)).

Case 3: ϕ = ϕ1 ∨ ϕ2 . By the induction hypothesis,
for i = 1, 2,

−distρτ (x,Lt(ϕi)) ≤ Jϕi,OKρτ (x, t) ≤ depthρτ (x,Lt(ϕi))

Implying

ti−distρτ (x,Lt(ϕi)) ≤ tiJϕi,OKρτ (x, t) ≤ tidepthρτ (x,Lt(ϕi))

Now Lt(ϕ1 ∨ ϕ2) = Lt(ϕ1) ∪ Lt(ϕ2), therefore

depthρτ (x,Lt(ϕ))

= distρτ (x, (XT \ Lt(ϕ1)) ∩ (XT \ Lt(ϕ2))

≥ distρτ (x, XT \ Lt(ϕ1)) t distρτ (x, XT \ Lt(ϕ2))

≥ Jϕ,OKρτ (x, t)

Similarly,

−distρτ (x,Lt(ϕ)) = −[distρτ (x,Lt(ϕ1)) u distρτ (x,Lt(ϕ2))]

= −distρτ (x,Lt(ϕ1)) t −distρτ (x,Lt(ϕ2))

≤ Jϕ,OKρτ (x, t)

Case 5: ϕ = ϕ1UIϕ2 . y ∈ Lt(ϕ) ⇔ ∃t′ ∈ t +R I

s.t. y ∈ Lt′(ϕ2) and y ∈ Lt′′(ϕ1) for all t < t′′ < t′

⇔ ∃t′ ∈ t+R I s.t. y ∈ Lt′(ϕ2)
⋂
∩t<t′′<t′Lt′′(ϕ1)

⇔ y ∈ ∪t′∈t+RI [Lt′(ϕ2)
⋂
∩t<t′′<t′Lt′′(ϕ1)]

Therefore distρτ (x,Lt(ϕ)) equals

distρτ (x,∪t′∈t+RI
[
Lt′(ϕ2)

⋂
∩t<t′′<t′Lt′′(ϕ1)

]
)

= inf
t′∈t+RI

distρτ (x,Lt′(ϕ2)
⋂
∩t<t′′<t′Lt′′(ϕ1))

≥ inf
t′∈t+RI

[
distρτ (x,Lt′(ϕ2))

⊔
distρτ (x,∩t<t′′<t′Lt′′(ϕ1))

]
≥ inf

t′∈t+RI

[
distρτ (x,Lt′(ϕ2))

⊔
sup

t<t′′<t′
distρτ (x,Lt′′(ϕ1))

]
= inf

t′∈t+RI

[
distρτ (x,Lt′(ϕ2))

⊔
− inf
t<t′′<t′

−distρτ (x,Lt′′(ϕ1))

]
= inf

t′∈t+RI
−
[
−distρτ (x,Lt′(ϕ2))

l
inf

t<t′′<t′
−distρτ (x,Lt′′(ϕ1))

]
= − sup

t′∈t+RI

[
−distρτ (x,Lt′(ϕ2))

l
inf

t<t′′<t′
−distρτ (x,Lt′′(ϕ1))

]

PROOF SKETCH OF THM. IV.5

The proof of part 1 relies on the observation that
dτ (x,y, t) ≤ |xt − yt|, and using an induction on the
structure of the formula. To show tightness, it suffices to
provide a signal and formula where equality is achieved.
For example, consider the one dimensional signal x ≡
1,O(p) = [0, inf) and the formula ϕ = �p. Then it follows
immediately that |Jϕ,OKρτ (x, t)| = |Jϕ,OK(x, t)| = 1. For
part 2, the continuity of the signals ensures that as τ grows
smaller, dτ (Def. II.1) approaches the Euclidian distance,
implying the rest.


